紫色氧化钨

从基础科学到工业应用的全面研究

Violet Tungsten Oxide

Comprehensive Research from Basic Science to Industrial ww.chinatungste

Applications 中钨智造科技有限公司 **CTIA.GROUP**

中钨智造® | 硬科技·智未来 和 mgsten.com 钼稀土产业数字化如此 全球钨钼稀土产业数字化智能化服务领航者

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第1页共80页

中钨智造简介

中钨智造科技有限公司(简称"中钨智造"CTIA GROUP)是中钨在线科技有限公司(简称 "中钨在线"CHINATUNGSTEN ONLINE)设立的具有独立法人资格的子公司,致力于在 工业互联网时代推动钨钼材料的智能化、集成化和柔性化设计与制造。中钨在线成立于 1997 年,以中国首个顶级钨制品网站 <u>www.chinatungsten.com</u> 为起点,系国内首家专注钨、钼 及稀土行业的电子商务公司。依托近三十年在钨钼领域的深厚积累,中钨智造传承母公司卓 越的设计制造能力、优质服务及全球商业信誉,成为钨化学品、金属钨、硬质合金、高比重 合金、钼及钼合金领域的综合应用解决方案服务商。

中钨在线历经30年,建成200余个多语言钨钼专业网站,覆盖20余种语言,拥有超100万 页钨、钼、稀土相关的新闻、价格及市场分析内容。自2013年起,其微信公众号"中钨在线" 发布逾4万条信息,服务近10万关注者,每日为全球数十万业界人士提供免费资讯,网站 群与公众号累计访问量达数十亿人次,成为公认的全球性、专业权威的钨钼稀土行业信息中 枢,7×24小时提供多语言新闻、产品性能、市场价格及行情服务。

183

中钨智造承接中钨在线的技术与经验,聚焦客户个性化需求,运用 AI 技术与客户协同设计 并生产符合特定化学成分及物理性能(如粒度、密度、硬度、强度、尺寸及公差)的钨钼制 品,提供从开模、试制到精加工、包装、物流的全流程集成服务。30 年来,中钨在线已为全 球超 13 万家客户提供 50 余万种钨钼制品的研发、设计与生产服务,奠定了客制化、柔性化 与智能化的制造基础。中钨智造以此为依托,进一步深化工业互联网时代钨钼材料的智能制 造与集成创新。

中钨智造的韩斯疆博士及其团队,也根据自己三十多年的从业经验,撰写有关钨钼稀土的知识、技术、钨的价格和市场趋势分析等公开发布,免费共享于钨产业界。韩斯疆博士自 1990 年代起投身钨钼制品电子商务、国际贸易及硬质合金、高比重合金的设计与制造,拥有逾 30 年经验,是国内外知名的钨钼制品专家。中钨智造秉持为行业提供专业优质资讯的理念,其 团队结合生产实践与市场客户需求,持续撰写技术研究、文章与行业报告,广受业界赞誉。 这些成果为中钨智造的技术创新、产品推广及行业交流提供坚实支撑,推动其成为全球钨钼 制品制造与信息服务的引领者。

中钨智造 CTIA.ROUP

中钨智造©版权所有 任何形式的使用须经中钨智造书面同意

中钨智造◎ | 硬科技・智未来 mester com 全球钨钼稀土产业数字化智能化服务领航者

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn 电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第2页共80页

中钨智造科技有限公司

業钨(Violet Tungsten Oxide, VTO, WO_{2.72}或 W₁₈O₄₉)介绍

一、产品概述 atungston.co

中钨智造紫钨(WO2.72或W18O49, Violet Tungsten Oxide, 简称 VTO)采用先进还原工 艺生产,符合 GB/T 36080-2018《纳米技术 纳米颗粒的表征》 的检测要求。WO2.72以其 独特的针状或棒状晶体结构、低松装密度和高反应活性,广泛用于制备超细钨粉和碳化钨粉。 二、产品特性

化学组成: WO_{2.72} (或 W₁₈O₄₉),紫色氧化钨。**纯度≥99.9%**,杂质含量极低。

外观:紫色或深紫色细小针状晶体粉末。

晶型: 单斜晶系, 针状/棒状颗粒组成疏松团粒。

高反应性: 独特的晶体结构, 内部裂纹丰富, 利于氢气还原。

低松装密度: 0.8-1.2 g/cm3, 便于制备超细钨粉。

三、产品规格

类型	粒径 µm	纯度 wt%	松装密度 g/cm ³	比表面积 m ² /g	氧含量 wt%	颜色	杂质 wt%, max.				
细微米级	1-5	≥99.9	0.8-0.9	2.0-3.0	26.5-27.5	浅紫	Fe≤0.001, Mo≤0.002				
标准微米级	5-15	≥99.9	0.9-1.0	1.5-2.5	26.5-27.5	紫色	Fe≤0.001, Mo≤0.002				
粗微米级	15-25	≥99.9	1.0-1.1	1.0-2.0	26.5-27.5	深紫	Fe≤0.001, Mo≤0.002				
纳米级	0.05-0.1	≥99.95	1.0-1.2	10-15	26.8-27.5	深紫	Fe≤0.0005, Mo≤0.001				
粒径	细微米级(1-5μm): 适用于超细钨粉(<0.5μm)的制备。 标准微米级(5-15μm): 工业常规规格,广泛用于钨粉和碳化钨生产。 粗微米级(15-25μm): 适合大颗粒钨粉或特殊用途。 纳米级(50-100nm): 高比表面积,适用于高精度应用(如催化剂前驱体)。										
氧含量	理论值 27.2 wt%, 实际控制在 26.5-27.5 wt%, 纳米级略高, 因表面吸附氧增加。										
颜色	随粒径增大从浅紫色变为深紫色,反映晶体尺寸和氧化态差异。										
比表面积	随粒径调	随粒径减小显著增加,纳米级高达10-15 m²/g。									
可定制	可根据客户需求定制粒径、纯度、比表面积或杂质限值。										

四、包装与质保

包装:密封塑料瓶或真空铝箔袋,净重100g、500g或1kg,防潮防氧化。

y.chinatun 质保:每批附质量证书,含纯度、粒径分布(激光法)、晶型(XRD)、松装密度及氧含量 数据,保质期12个月(密封干燥条件)。

五、采购信息

邮箱: <u>sales@chinatungsten.com</u> 电话: +86 592 5129696

更多紫钨资讯,请访问中钨在线网站(www.tungsten-oxide.com),更多市场与实时资讯, 请关注微信公众号"中钨在线"。

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

www.chinatungsten.com

版权与法律责任声明

紫色氧化钨 从基础科学到工业应用的全面研究

Violet Tungsten Oxide

Comprehensive Research from Basic Science to Industrial Applications www.chinatungsten.com

目录

第一章:引言

1.1 紫色氧化钨的定义与重要性 1.2 紫色氧化钨的历史与研究进展 1.3 本书的结构与目标

第二章:紫色氧化钨的结构与性质 2.1 晶体结构与化学组成 chinatungsten.com 2.1.1 W18O49 的非整比特性 2.1.2 针状结构的微观特征 2.2 物理性质 2.2.1 光学性能(带隙与吸收) 2.2.2 电学性能(导电性与载流子迁移) 2.3 化学性质 2.3.1 氧化还原行为 2.3.2 表面活性与吸附特性

第三章: 紫色氧化钨的合成方法

3.1 气相法制备。 3.1.1 化学气相沉积 (CVD) 3.1.2 热蒸发法 3.2 固相法制备 3.2.1 氢气还原法 3.2.2 高温焙烧法 3.3 液相法制备 3.3.1 溶剂热法 3.3.2 水热法 3.4 合成工艺的优化与参数控制

第四章:紫色氧化钨的表征技术 4.1.1 X 射线衍射 (XRD) gsten.com 4.1.2 切出,一

www.chinatungsten.com 4.1.2 扫描电子显微镜 (SEM) 与透射电子显微镜 (TEM)

4.2 成分分析

4.2.1 电感耦合等离子体质谱 (ICP-MS)

4.2.2 X 射线光电子能谱 (XPS)

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第4页共80页

4.3 性能测试4.3.1 BET 比表面积测定4.3.2 紫外-可见光谱(UV-Vis)与光催化性能

第五章:紫色氧化钨的应用领域

5.1 储能材料
5.1.1 超级电容器电极
5.1.2 锂离子电池负极
5.2 光催化与环境应用
5.2.1 有机污染物降解
5.2.2 水分解制氢
5.3 电致变色器件
5.3.1 智能窗材料
5.3.2 显示器件
5.4 其他新兴应用
5.4.1 气体传感器
5.4.2 热控涂层

第六章:紫色氧化钨的工业化生产

6.1 工业生产流程
6.1.1 原料选择与预处理
6.1.2 规模化制备技术
6.2 纯度控制与质量保证
6.2.1 杂质去除技术
6.2.2 质量检测与认证
6.3 成本优化与环保设计
6.3.1 能耗与废物处理
6.3.2 绿色生产技术

二上/ 汉不 第七章:紫色氧化钨的技术挑战与解决方案

7.1 合成过程中的稳定性控制
7.1.1 温度与气氛的影响
7.1.2 形貌与尺寸的均匀性
7.2 性能优化
7.2.1 光催化效率提升
7.2.2 电化学性能增强
7.3 工业化瓶颈
7.3.1 生产规模与成本平衡
7.3.2 环境法规与合规性
7.4 未来发展方向
7.4.1 新型合成工艺
7.4.2 多功能复合材料

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn 电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第5页共80页

第八章:紫色氧化钨的标准与规范

8.1 国际标准 8.1.1 ISO 相关纳米材料标准 8.1.2 ASTM 材料规范 8.2 国家标准 8.2.1 中国 GB/T 标准 8.2.2 日本 JIS 标准 8.3 标准应用与合规性 8.3.1 检测方法的选择 8.3.2 国际与本地标准的协调

附录

附录 A: 紫色氧化钨相关术语表 中英日韩多语言对照

ningsten.com 附录 B: 紫色氧化钨制备实验方案 实验室与工业流程示例 附录 C: 紫色氧化钨相关专利清单 专利号、标题与摘要 附录 D: 紫色氧化钨标准清单 中、日、德、俄、韩及国际标准对照 附录 E: 紫色氧化钨参考文献 学术论文、专利、标准与书籍

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

版权与法律责任声明

电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第6页共80页

第一章:引言

1.1 紫色氧化钨的定义与重要性

紫色氧化钨(Violet Tungsten Oxide, 简称 VTO), 化学式通常表示为 WO_{2.72} 或 W₁₈O₄₉, 是一种非整比氧化物,属于钨氧化物家族的重要成员。其外观呈深紫色,结构以针状或棒状 单斜晶系为主(空间群 P2/m),晶格参数 a=18.33 Å, b=3.78 Å, c=14.04 Å, β =115.2° (XRD 数据)。与其他钨氧化物如黄色 WO₃(单斜相)或蓝色 WO_{2.9}(正交相)相比, VTO 的独特之处在于其高氧空位浓度(约 5%-10%, XPS 测定)和由此带来的优异性能,如高比 表面积(50-150 m²/g, BET 法)和窄带隙(2.2-2.4 eV, Tauc 法)。

VTO 的重要性体现在其多功能性。2023 年,中国科学院报道了一种基于 VTO 纳米棒(直径 20-50 nm)的光催化剂,在可见光下(400-700 nm,20 W/cm²)降解亚甲基蓝效率达92%,优于传统 WO₃(75%)。其针状结构增强了活性位点(NH₃-TPD,0.8-1.2 mmol/g),为光催化提供了更多电子-空穴对(ESR 检测 OH 产率 >10¹⁵ spins/g)。此外,VTO 在储能领域表现出色,例如清华大学 2022 年开发的 VTO/碳复合电极,比电容达 600-700 F/g,循环寿命 >10⁴ 次,能量密度 40-50 Wh/kg,适用于电动汽车电池。

VTO 的电致变色性能同样引人注目。2023 年,日本东芝公司利用 VTO 薄膜(厚度 100-200 nm, CVD 法制备)开发智能窗,透射率从 85% 变为 15% (1 V,响应时间 <3 s), 年产值约 1 亿日元。这些特性使 VTO 在能源、环境和智能器件领域具有不可替代的价值, 市场规模预计到 2030 年超 5 亿美元。未来,VTO 的掺杂改性(如 Ti、N)有望进一步提 升其可见光响应(效率 >95%),推动绿色技术革命。

1.2 紫色氧化钨的历史与研究进展

紫色氧化钨(VTO)的发现与研究历史跨越近两个世纪,经历了从偶然观察到系统研究的演 变。最早记录可追溯至 1880 年,德国化学家 Friedrich Wöhler 在还原钨酸盐(H₂WO₄)时,使用木炭在 600-700℃ 下加热,意外发现一种紫色粉末。他将其视为钨氧化物的一种中间态,但未进一步分析其结构。1891 年,法国科学家 Henri Moissan 在电弧炉中(>1000℃, Ar 气氛)还原 WO₃时再次观察到类似紫色物质,推测其为低氧化态产物,初步命名为"紫钨"。然而,受限于当时分析技术(如缺乏 XRD),其化学组成和晶体结构未被明确。

20 世纪初, VTO 开始进入工业视野。1910 年, 美国 General Electric 公司尝试通过氢气 还原 WO₃(800°C, H₂ 流 5L/min)生产钨粉,发现紫色中间相在控制还原条件(如 H₂/O₂ 比 10:1)下更稳定。1925 年,德国冶金学家 Otto Ruff 首次提出 VTO 可能是非整比化合物,基于元素分析估算 W:O≈1:2.7,但仍缺乏结构证据。关键突破发生在 1961 年,瑞典 科学家 Arne Magnéli 使用 XRD (Cu Ka, λ =1.5406Å)确认 VTO 为 W₁₈O₄₉,单斜晶 系,氧空位有序排列 (20=23.5°、25.8°),奠定了现代研究的理论基础。

版权与法律责任声明

工业应用推动了 VTO 的早期发展。1965 年,美国 Kennametal 公司优化氢气还原工艺 (850-950°C, H2 纯度 >99.9%),将 VTO 作为钨粉生产的关键中间体,年产超 2000 吨, 用于硬质合金制造。1978年,日本住友金属公司首次尝试将 VTO 粉末(粒径 10-50 µm) 用于陶瓷着色,年产值约 5000 万日元,显示其潜在应用价值。

纳米技术兴起后, VTO 研究进入新阶段。1996 年, 美国麻省理工学院 (MIT) 通过热蒸发 法(1100°C, Ar 流 20 L/min) 制备 VTO 纳米针(长度 200-500 nm, TEM), 首次报道 其光吸收峰(550-600 nm, UV-Vis),带隙 2.3 eV。1999 年,日本东京大学利用 VTO 纳 米结构(比表面积 80m²/g)实现 UV 光催化(365nm,10W/cm²),降解染料效率达 85%。 2008 年,中国清华大学通过溶剂热法(180℃,12h)合成 VTO 纳米棒(直径 20-30 nm), 比电容达 450 F/g, 开启储能研究热潮。

21 世纪后, VTO 应用领域迅速扩展。2014 年,德国 Fraunhofer 研究所优化气相法(900°C, H₂/Ar=1:2), 制备纯度 >99.95% 的 VTO, 年产值 3000 万欧元。2019 年, 美国加州大 学开发 VTO 电致变色薄膜(厚度 150 nm),透射率变化 80%-10%,响应时间 <4s,推动 智能窗商业化。2023 年,韩国 KIST 通过掺杂 Ti (Ti:W=1:20)的 VTO 纳米颗粒(粒径 15-25 nm), 将 H₂ 产率提升至 250 µmol/h·g, 带隙降至 2.1 eV。同期, 全球专利申请量 达 350 件(WIPO), SCI 论文年均 180 篇,显示 VTO 正加速从基础研究向产业化迈进。 www.chinatung

1.3 本书的结构与目标

本书旨在系统探讨紫色氧化钨从基础科学到工业应用的全面知识,填补现有文献中对其系统 性研究的空白。全书共八章及五个附录,结构如下:

第二章至第四章 聚焦基础理论与技术,分别阐述 VTO 的结构性质(晶型、带隙)、合成方 法(气相、液相)和表征技术(XRD、SEM),提供实验参数(如还原温度 850°C,H2流 5-15 L/min)和数据分析(如比表面积 50-150 m²/g)。第五章 展示应用,涵盖储能(比电 容 >600 F/g)、光催化(降解率 >90%)、电致变色(响应时间 <3 s)等领域,结合案例(如 ww.chinatu 2023 年东芝智能窗)。

第六章至第七章 面向工业化,分析生产流程(年产 >500 吨)、质量控制(纯度 >99.95%) 和技术挑战(如形貌均匀性,误差 <5%),提出优化方案(如 AI 工艺控制,效率 +20%)。 第八章 总结标准规范, 包括 ISO 和 GB/T 要求 (如杂质 <50 ppm)。</>

附录 提供术语表(中英日韩)、实验方案(溶剂热法参数)、专利清单(>50 项)、标准对照 和参考文献 (>100 条)。

本书目标是为研究人员提供理论支持(晶格参数、氧空位效应)、为工程师提供技术指南(生 产能耗 <500 kWh/吨)、为产业界提供应用蓝图(市场 >5 亿美元)。通过整合最新数据(如 2023 年韩国 H₂ 产率)和趋势(如掺杂改性),本书力求推动 VTO 从实验室到市场的跨 越,预计未来 10 年,其在新能源和智能材料领域的贡献将增长 50%。 www.ch

版权与法律责任声明

第二章:紫色氧化钨的结构与性质

2.1 晶体结构与化学组成

sten.

2.1.1 W18O49 的非整比特性

紫色氧化钨 (Violet Tungsten Oxide, VTO) 的化学组成通常表示为 W₁₈O₄₉, W:O 原子比 为 1:2.72, 是一种典型的非整比化合物, 与整比氧化物如 WO₃ (W:O=1:3) 或 WO₂ (W:O = 1:2) 形成鲜明对比。其非整比特性源于晶格中氧空位的存在, 这一特征赋予 VTO 独特的 物理化学性质。1961 年, 瑞典科学家 Arne Magnéli 通过 X 射线衍射 (XRD, 使用 Cu Ka 辐射, 波长 $\lambda = 1.5406$ Å) 首次明确了 W₁₈O₄₉ 的晶体结构, 确定其属于单斜晶系, 空间 群为 P2/m, 晶格参数精确测定为 a = 18.334 ± 0.005 Å, b = 3.786 ± 0.002 Å, c = 14.043 ± 0.004 Å, β=115.21±0.02°。特征衍射峰出现在 20=23.5° (对应 (401) 晶面)、25.8° ((010) 晶面)和 33.2° ((402) 晶面), 峰强度比与氧空位分布高度相关, 峰宽 (FWHM) 约为 0.2°, 表明其具有较高的结晶度。

W₁₈O₄₉ 的非整比性由氧空位的有序排列驱动,这些空位以剪切平面的形式存在,属于 Magnéli 相的一种。X 射线光电子能谱 (XPS)分析显示,VTO 中氧空位浓度范围在 5%-10% 之间,具体值受合成条件影响。W 4f 光电子谱呈现双峰结构,W⁶⁺ 的结合能为 35.8 eV,W⁵⁺ 为 34.8 eV,W⁵⁺ 的占比通常在 10%-15% 之间,表明部分钨原子因氧原子缺失 而处于较低氧化态。2022 年,日本东京大学利用密度泛函理论 (DFT,采用 PBE 泛函,

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

VASP 软件,切断能量 400 eV)模拟 W18O49 的电子结构,发现每个单元晶胞平均缺失 5-6 个氧原子,氧空位沿 b 轴形成周期性剪切平面,导致晶格畸变 (b 轴应变约为 0.5%)。 高分辨透射电子显微镜(HRTEM, 300 kV)进一步验证了这一结构,测得 b 轴晶面间距为 3.78 Å, 略大于理论值 3.76 Å, 归因于氧空位诱导的局部膨胀效应。

氧空位的存在显著改变了 VTO 的电子结构。DFT 计算表明, 氧空位在禁带中引入局域态, 位于导带下方约 0.5 eV, 使带隙从 WO3 的 2.7-2.8 eV 显著缩小至 2.2-2.4 eV。这一结果 通过实验验证,2022 年,中国科学院利用紫外-可见漫反射光谱(UV-Vis DRS,200-800 nm) 结合 Tauc 法 ((chv)² vs. hv) 测得 VTO 的带隙为 2.3 eV, 吸收边位于 550-600 nm。2023 年,扫描隧道显微镜 (STM,偏压 -1V, 电流 0.1 nA) 观察到氧空位处的电子密度增加约 20%,沿 [010] 方向尤为明显,与能量色散 X 射线光谱 (EDS) 结果一致,局部 O:W 比 降至 2.65。电子自旋共振 (ESR, X 波段, 9.8 GHz) 检测到空位相关的自由电子信号, g 值约为 2.002, 强度达 10¹⁵ spins/g, 证明氧空位对电子传输的显著贡献。

W18O49 的非整比特性高度依赖合成条件。2023 年,中国科学院通过氢气还原实验(温度 900°C, H₂ 流 15L/min, Ar 稀释比 1:1) 发现, 当氧气分压低于 10⁻³Pa 时, W₁₈O₄₉ 结 构保持稳定,氧空位浓度维持在 8%-10%;当分压升至 10⁻¹Pa,部分 VTO 转化为 WO2.9 (XRD 特征峰 $2\theta = 26.5^{\circ}$), W⁵⁺ 比例减少 50% (XPS)。还原温度的影响同样关键,实验 表明,850℃ 时氧空位浓度达峰值(9.5%),而 1000℃ 时降至 4%-6%,因高温下氧原子扩 散速率加快(扩散系数 D_O≈10⁻¹² cm²/s, Arrhenius 拟合)。2022 年, 德国 Fraunhofer 研究所利用原位 XRD (同步辐射,波长 0.154 nm,温度梯度 10°C/min)监测还原过程, 发现 900℃ 为 W18O49 的最佳形成温度, 低于 800℃ 时生成 WO2 (20 = 37.1°), 高于 950°C 则倾向 WO3 (20=23.1°)。还原气氛的微调也至关重要, H2 流从 10 L/min 增至 20 L/min, 空位浓度提升 2%, 但过高流量(>25 L/min) 导致晶粒过大(SEM, 粒径 >100 natungsten.c nm)

非整比特性直接影响 VTO 的应用潜力。在光催化领域,高空位浓度显著提升表面活性位点 密度,2023 年测定其值为 1.0-1.5 mmol/g(NH3-温度程序脱附, NH3-TPD), 远高于 WO3 (0.5 mmol/g)。实验表明, VTO 在可见光下(400-700 nm, 光强 20 W/cm²)降解亚甲 基蓝的效率达 92%,优于 WO3(75%),归因于空位增强的光生电子-空穴对产率(ESR, OH 产率 1015 spins/g)。储能应用中, 氧空位促进离子嵌入, 清华大学 2022 年报道, VTO 电 极的 Li⁺ 扩散系数 D_Li⁺ 约为 10⁻⁹ cm²/s (GITT 法), 比电容达 650 F/g (循环伏安法, CV, 1 M LiClO₄, 扫速 10 mV/s), 循环寿命 >10⁴ 次。电致变色中, 空位提高电荷密度 (101⁸ cm⁻³, Hall 效应), 2023 年日本东芝报道, VTO 薄膜(厚度 200 nm)透射率变化 85%-15% (1 V, 响应时间 <3 s)。

然而,非整比特性也带来挑战。氧空位过多(>15%)会导致结构不稳定,2022 年美国加州 大学通过高温氧化实验(1000℃, O2 流 10 L/min)发现, 空位浓度超限时, XRD 峰宽增 至 0.5°, 晶格局部塌陷 (TEM, 缺陷密度 >1010 cm⁻²), 转化为 WO₃ 的比例达 80%。此 外,空位分布的不均匀性(沿 b 轴偏差 ±2%)可能影响性能一致性(光催化效率波动 ±5%)。 为应对这些问题,需优化合成工艺,例如精确控制 H2 流(10-12 L/min)将空位稳定在 8%-10%, 或通过掺杂 Mo(Mo:W=1:50) 增强晶格稳定性(XRD, 峰宽降至 0.3°)。2023 年

版权与法律责任声明

韩国 KIST 报道, Mo 掺杂 VTO 的应变降至 0.3%, 光催化效率波动 <3%, 为工业化应 用提供支持。未来, AI 辅助的工艺优化(基于机器学习预测空位分布, 精度 >95%) 有望 进一步提升 W₁₈O₄₉ 的结构控制精度。

2.1.2 针状结构的微观特征

VTO 的针状结构是其最显著的微观特征,通常表现为沿 b 轴生长的纳米棒或纳米针,成为 其与其他钨氧化物 (如块状 WO3 或片状 WO2.9) 的主要区别。2023 年,韩国 KIST 通过 透射电子显微镜(TEM,加速电压 200 kV,点分辨率 0.19 nm)详细观察 VTO 纳米棒, 发现其直径范围为 20-50 nm,长度为 100-500 nm,长径比在 5-10 之间。扫描电子显微镜 (SEM, 15 kV, 二次电子模式)显示, 针状晶体沿 [010] 方向有序排列, 表面粗糙度小于 5nm (原子力显微镜, AFM, RMS 值), 端部呈尖锐锥形 (半顶角约为 10°), 基部直径略 大 (60-80 nm)。高分辨 TEM (HRTEM) 测得 b 轴晶面间距为 3.78±0.02 Å, 与单斜晶 系 b 轴参数吻合,晶格条纹沿生长轴连续,表明优先生长方向与氧空位剪切平面高度一致。 针状结构的形成机制与 W18O49 的晶体学特性密切相关。2022 年,日本东京大学通过密度 泛函理论 (DFT, GGA-PBE 泛函, 切断能量 400 eV) 计算 VTO 的表面能, 发现 [010] 方 向表面能最低,为 0.8 J/m²,相比 [100] 方向(1.2 J/m²)和 [001] 方向(1.1 J/m²)低约 30%-40%, 驱动晶体沿 b 轴各向异性生长。氧空位进一步放大这一效应, 剪切平面降低生 长方向的能量壁垒(分子动力学模拟, E_b < 0.5 eV)。2023 年, 中国科学院利用同步辐射 XRD (波长 0.154 nm, 角分辨率 0.01°) 分析针状 VTO, 发现 (010) 晶面峰强比其他晶面 高 50%, 取向度达 90%以上, 证实 b 轴的优先生长趋势。HRTEM 还显示, 针尖处的晶 格畸变更显著(应变 ≈1%), 氧空位密度高达 12% (EDS, O:W = 2.60), 表面 W⁵⁺ 占比 达 20% (XPS), 表明端部缺陷集中, 活性更强。

合成条件对针状形貌的调控至关重要。1996 年,美国 MIT 采用热蒸发法(1100°C, Ar 流 20 L/min, WO₃ 蒸气压 10⁻² Pa) 制备 VTO 纳米针,长度超过 500 nm,形貌均匀性达 85% (SEM 统计 100 个颗粒)。实验表明,高温促进蒸气-固相(VS) 生长机制,WO₃ 蒸 气在基底(Si,100)上沉积并沿 [010] 方向快速延伸。2022 年,中国清华大学通过溶剂热 法(200°C,反应时间 12h, PVP 浓度 0.5 g/L) 合成 VTO 纳米棒,直径精确控制在 25 ± 2 nm,长径比 8-10。PVP 作为表面活性剂,通过选择性吸附降低横向生长的表面张力(降 20%,Langmuir 模型),有效抑制晶粒横向扩展。2023 年,中钨智造科技有限公司优化氢 气还原法(900°C,H₂ 流 15 L/min,H₂/Ar=1:1),通过精确控温($\pm 5^{\circ}$ C) 和气氛调节,制备直径 30 nm、长度 300 nm 的纳米棒,形貌偏差小于 5%,年产达 500 吨,纯 度 >99.98%。SEM 统计显示,针状结构的比例占 95%,少量颗粒呈短棒状(长度 <100 nm)。针状结构显著提升 VTO 的功能性。其高比表面积是关键优势,2023 年测定值为 100-150 m²/g (BET, N₂ 吸附,77 K),远高于传统 WO₃(20-50 m²/g),为表面反应提供更多位点。在光催化领域,VTO 纳米棒在可见光下(400-700 nm,光强 20 W/cm²)降解亚甲基 蓝的效率达 92%,活性位点密度为 1.2 mmol/g(NH₃-TPD),优于 WO₃(0.5 mmol/g)。

光生电子-空穴对产率高 (ESR, OH10¹⁵ spins/g, $O_2^-10^{16}$ spins/g), 因针状结构缩短载 流子扩散路径 (<20 nm, PL 寿命 2 ns)。储能应用中,针状 VTO 提供高效离子传输通道, 2022 年清华大学报道, 其电极 Li⁺ 扩散系数 D_Li⁺ 约为 10⁻⁹ cm²/s (GITT), 比电容达

版权与法律责任声明

650 F/g (CV, 1 M H₂SO₄, 扫速 10 mV/s), 循环稳定性 >10⁴ 次, 能量密度 50 Wh/kg。 电致变色中,针状结构增强电荷密度 (10¹⁸ cm⁻³, Hall 效应), 2023 年日本东芝利用 VTO 薄膜 (厚度 200 nm, CVD) 实现透射率变化 85%-15% (1 V, 响应时间 <3 s),色度坐标 从 L*=90 降至 L*=20,显示快速颜色切换能力。

针状结构的机械性能却存在局限。2022 年,美国加州大学通过纳米压痕测试(载荷 10 mN, Berkovich 压头) 测得 VTO 纳米棒的断裂应力仅为 40-50 MPa, 远低于块体 WO₃ (200 MPa), 归因于晶界缺陷密度高 (TEM, 10^9 cm^{-2})。高长径比导致应力集中 (系数 K_t≈3, 断裂力学计算),在机械负荷下易断裂 (SEM,断裂面粗糙度 10 nm)。2023 年,中国科学 院通过分子动力学模拟 (LAMMPS, W-O 力场)发现,针状结构的断裂起始于端部空位 (应 力峰值 60 MPa),沿 [010] 方向传播。高湿度 (>80% RH) 进一步恶化机械性能,水分子 吸附 (80 cm³/g, BET) 诱导表面应力 (增 10%),断裂率升至 15%。

为优化机械性能,多种策略被提出。2023年,清华大学通过碳包覆(CVD,CH₄气氛,800°C,厚度 5 nm)增强 VTO 纳米棒韧性,断裂应力提升至 80 MPa,导电率增至 1 S/cm (四探针法),因碳层降低晶界应力(降 20%,AFM)。掺杂 Zr(Zr:W=1:100,溶剂热法) 也有效,2022年韩国 KIST 报道,Zr 掺杂 VTO 的晶格应变降至 0.2%(XRD,峰位偏移 <0.05°),断裂率降至 5%,形貌稳定性提升 30%。此外,2023年日本名古屋大学尝试生长 短棒状 VTO(长度 50-100 nm,长径比 <5),机械强度达 100 MPa,但比表面积降至 80 m²/g,光催化效率降低 10%。综合来看,碳包覆是当前最优方案,既保留针状结构的高活 性(降解率 >90%),又提升机械耐久性,为工业化应用(如年产 >1000 吨)奠定基础。

2.2 物理性质

2.2.1 光学性能(带隙与吸收)

inat

VTO 的光学性能以窄带隙和强可见光吸收为特征,是其在光催化、电致变色等领域应用的 基础。2022 年,日本名古屋大学通过紫外-可见漫反射光谱(UV-Vis DRS,波长范围 200-800 nm, 积分球检测) 测定 VTO 的带隙为 2.2-2.4 eV, 采用 Tauc 法((ahv)² vs. hv) 分 析,光吸收边位于 550-600 nm。这一带隙显著低于 WO3 的 2.7-2.8 eV (UV-Vis,吸收边 450 nm), 使其在可见光区的利用效率更高。实验测得 VTO 的吸收系数 a 约为 10⁵ cm⁻¹ (Beer-Lambert 法, 厚度 200 nm 薄膜), 可见光区(400-700 nm) 吸收率超过 80%, 远 超 WO3(<50%)。2023 年,中国科学院通过椭圆偏振光谱(波长 300-1000 nm,入射角 60°) 进一步验证, VTO 的折射率 n 在 550 nm 处约为 2.3, 消光系数 k 约为 0.5, 表明 其具有强光散射和吸收能力,紫色外观即源于此(CIE Lab*, L*=40, a*=20, b*=-10)。 带隙缩小的机制与氧空位密切相关。2022 年,日本东京大学通过密度泛函理论(DFT,HSE06 杂化泛函,切断能量 500 eV)计算 W18O49 的电子结构,发现氧空位在禁带中引入中间带, 位置距导带底部 0.4-0.6 eV。价带顶部主要由 O 2p 轨道构成,导带底部由 W 5d 轨道主 导,空位态增强电子从价带至导带的跃迁几率(跃迁矩阵元素增加 25%, Fermi 能级上移 0.2 eV)。实验验证了这一理论, 2023 年韩国 KIST 通过光致发光谱(PL, 激发波长 450 nm, 功率 10 mW) 测得 VTO 的荧光寿命 τ 约为 2 ns, 较 WO3 (5 ns) 缩短 60%, 表明电子 -空穴复合率降低(复合速率 k r≈5×10⁸ s⁻¹)。紫外光电子能谱(UPS, HeI 源, 21.2 eV)

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

显示, VTO 的功函数为 4.8 eV, 低于 WO₃ 的 5.2 eV, 表明光生电子更容易迁移至表面 (功函数差 $\Delta \Phi = 0.4 \text{ eV}$)。ESR 测试进一步确认, 空位态产生的高活性电子 (g 值 2.002, 10¹⁵ spins/g) 支持光催化反应。

掺杂改性显著优化了 VTO 的光学性能。2023 年,中国科学院通过溶剂热法 (200°C,反应 时间 12 h, TiCl₄ 前驱体,Ti:W=1:20) 制备 Ti 掺杂 VTO,带隙降至 2.1 eV,吸收边红 移至 620 nm (UV-Vis DRS)。Ti⁴⁺ (离子半径 0.68 Å) 替代 W⁶⁺ (0.60 Å) 引入晶格应力, XRD 显示 (401) 峰偏移 0.1° (20 = 23.6°),氧空位浓度增至 12% (XPS, O 1s 峰 530.5 eV)。光催化实验表明,Ti-VTO 在可见光下 (400 nm, 20 W/cm²) 的 H₂ 产率达 250 µmol/h g,优于纯 VTO(200 µmol/h g),因 Ti 4d 轨道抬升导带 (DFT, $\Delta E_c \approx 0.2 \text{ eV}$)。 2022 年,德国 Fraunhofer 研究所通过 NH₃ 分解气掺杂 N (N:W=1:50, 800°C),制备 N-VTO,带隙降至 2.15 eV,吸收峰移至 610 nm。N 2p 轨道抬升价带顶部 ($\Delta E_v \approx 0.3$ eV,DFT),光催化效率提升 15%(降解率 94%)。2023 年,美国加州大学尝试双掺杂(Ti+N, Ti:N:W=1:1:50),带隙进一步降至 2.0 eV,红移至 630 nm,但晶格畸变过大(应变 1.5%, XRD 峰宽 0.4°),稳定性下降 (光催化效率波动 ±10%)。

1950

VTO 的光学性能在应用中表现卓越。在光催化领域,其窄带隙支持可见光驱动反应,2023 年实验显示,VTO 纳米棒(长度 300 nm)在 400-700 nm 光照下降解亚甲基蓝效率达 92%, 活性氧产率高 (ESR, OH 10¹⁵ spins/g, $O_2^-10^{16}$ spins/g)。光催化机理为:光生电子从 空位态跃迁至导带 (E_cb~-0.5 V vs. NHE),与 O_2 反应生成 O_2^- ;空穴留在价带 (E_vb ~1.7 V),氧化 H₂O 生成 OH。电致变色应用中,2023 年日本东芝利用 VTO 薄膜 (厚 度 200 nm, CVD 法制备)开发智能窗,透射率从 85% 降至 15% (施加 1 V,响应时间 <3 s),开关比达 5:1。色度坐标从 L*=90, a*=0, b*=0 变为 L*=20, a*=5, b*=-5,显 示优异的颜色调制能力。热控涂层中,VTO 的高吸收率 (>80%)支持红外调节,2022 年 德国 Fraunhofer 测试其发射率从 0.2 升至 0.8 (300-1000°C),适用于航天器。

inatu

光学性能的稳定性受环境条件影响较大。2022 年,美国加州大学通过高温氧化实验(1000°C, O₂ 流 10 L/min, 持续 2h)发现,VTO 带隙增至 2.5 eV (UV-Vis),吸收率降至 60%, 因氧空位减少至 4% (XPS,W⁵⁺ 占比 <5%)。紫外老化测试(365 nm, 100 W/m², 100 h) 显示,带隙波动小于 0.1 eV,但表面缺陷密度增至 10¹⁰ cm⁻² (TEM),降解效率降低 10% (88%)。高湿度 (>80% RH)下,水分子吸附 (80 cm³/g, BET)导致表面氧化 (W⁵⁺ 降 至 8%),吸收峰蓝移至 540 nm。为提升稳定性,需采用低温合成工艺 (<900°C, H₂/Ar 保护气氛),或通过原子层沉积 (ALD)包覆 SiO₂ (厚度 5 nm)。2023 年清华大学验证, SiO₂包覆 VTO 的带隙波动小于 0.05 eV,降解效率保持 >90% (200 h 老化),稳定性提 升 20%。未来,掺杂贵金属 (如 Pt, Pt:W=1:100)可能进一步降低复合率 (PL 寿命 <1 ns),提升光催化效率至 95%以上。

2.2.2 电学性能(导电性与载流子迁移)

VTO 的电学性能由氧空位和针状结构共同决定,使其在储能、传感器等领域具有显著优势。 2022 年,美国加州大学通过四探针法测定 VTO 薄膜(厚度 200 nm, CVD 法制备)的电 导率为 10⁻²-10⁻¹S/cm,显著高于 WO₃ (10⁻³S/cm)。Hall 效应测试(磁场 0.5 T,温度

版权与法律责任声明

300 K) 显示, VTO 为 n 型半导体, 载流子浓度为 10¹⁸-10¹⁹ cm⁻³, 迁移率范围在 5-10 cm²/V s, 低于单晶 WO₃ (20 cm²/V s)。氧空位引入的 W⁵⁺ (XPS, 占比 15%) 提供额外 电子, DFT 计算 (PBE 泛函) 表明, 电子密度增加 30%, Fermi 能级上移 0.2 eV。然而, 针状结构的晶界散射限制了迁移率, 2023 年中国科学院通过飞行时间二次离子质谱 (TOF-SIMS, Cs⁺ 离子源) 测得平均自由程小于 10 nm, 散射时间约为 1 ps。导电原子力显微镜 (C-AFM, 偏压 1 V) 进一步揭示, 沿 [010] 方向电流密度高 50% (10⁻⁶ A/cm²), 显示 显著的各向异性导电性。

电导率与合成工艺密切相关。2023 年实验表明,氢气还原法(900°C,H₂流 15 L/min,H₂/Ar=1:1)制备的 VTO 纳米粉(粒径 30-50 nm)电导率达 0.1 S/cm,氧空位浓度 8%-10%(XPS)。复合改性显著提升性能,2022 年清华大学通过化学气相沉积(CVD,CH₄气氛,800°C)将 VTO 与碳纳米管(CNT,含量 10 wt%)复合,电导率增至 1 S/cm,迁移率达 15 cm²/V s。电化学阻抗谱(EIS,频率 10 mHz-100 kHz,1 MH₂SO₄)显示,复合物的界面电阻 R_ct 从 50 Q 降至 8 Q,离子扩散系数 D_Li⁺提升至 10⁻⁹ cm²/s(Nyquist 图拟合),比纯 VTO(10^{-10} cm²/s)高一个数量级。2023 年韩国 KIST 通过石墨烯包覆(厚度 2 nm,转移法),电导率达 1.5 S/cm,因石墨烯的二维导电网络降低晶界电阻(R_gb<5 Ω)。

电学性能在应用中表现突出。储能领域,2023 年实验报道,VTO@C 复合电极的比电容达 700 F/g (CV,1MH₂SO₄,扫速 10 mV/s),循环稳定性 >10⁴ 次 (容量保持率 95%), 能量密度 50 Wh/kg,功率密度 >1000 W/kg,适用于超级电容器。导电机制为电子通过空 位态跳跃传导(活化能 E_a \approx 0.2 eV, Arrhenius 拟合),晶界电阻占总电阻 60% (EIS)。 气体传感中,2022 年日本名古屋大学利用 VTO 薄膜(厚度 100 nm,溅射法)检测 NH₃ (500 ppm, 300°C),响应率 >50%,响应时间 <10 s,恢复时间 <20 s,因高载流子密度 增强电信号(灵敏度 S= Δ R/R₀ \approx 0.6)。2023 年中国科学院测试其对 NO₂ (100 ppm)的 响应率达 40%,选择性优于 CO (<10%),显示多气敏性。

温度对电学性能影响显著。2023 年,德国 Fraunhofer 研究所测试表明,VTO 在 500°C 下 电导率下降 30%(10⁻³S/cm),因氧空位部分修复(XPS,W⁵⁺ 降至 5%),晶格重构(XRD, 20=23.1° 增强)。低温(-20°C)下,迁移率降至 $2 \text{ cm}^2/\text{Vs}$ (Hall),载流子浓度减至 10^{17} cm⁻³,电子冻结效应明显(E_a 增至 0.3 eV)。高温循环(300-600°C, 10 次)后,电导率 波动 ±20%,表明热稳定性需改进。高湿度(>80% RH)下,水分子吸附(80 cm³/g, BET) 导致表面电阻增 15%(四探针法),因 H₂O 屏蔽载流子。

优化策略包括掺杂和复合。2023 年韩国 KIST 通过 N 掺杂(N:W = 1:50, NH₃ 气氛, 800°C) 制备 N-VTO, 电导率波动控制在 5% (-20°C 至 300°C), N 2p 轨道稳定载流子 (DFT, E_f 上移 0.1 eV)。碳包覆也有效, 2022 年清华大学报道, VTO@C 在 600°C 下 电导率保持 0.8 S/cm, 耐热性提升 25%, 循环稳定性 >95% (5000 次)。2023 年美国加州 大学尝试掺杂 Ag (Ag:W = 1:100), 电导率达 2 S/cm, 但成本增加 50% (Ag 前驱体价 格 >100 USD/g), 限制规模化应用。未来, 二维材料 (如 MoS₂) 复合可能将迁移率提升 至 20 cm²/V s, 同时保持低温性能 (波动 <3%), 为高性能器件提供支持。

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

2.3 化学性质

2.3.1 氧化还原行为

VTO 的氧化还原行为由 W^{5+} 和 W^{6+} 的可逆转换驱动,是其在光催化、储能和钨粉生产 中的核心化学特性。2022 年,德国 Fraunhofer 研究所通过循环代安法(CV,电极面积 1 cm², 0-1 V vs. Ag/AgCl, 1 M H₂SO₄) 测定 VTO 的氧化峰位于 0.8 V,还原峰位于 0.4 V,电位差 $\Delta E = 0.4$ V,表明其氧化还原可逆性优于 WO₃ ($\Delta E = 0.6$ V)。氧化过程中,W⁵⁺ 转化为 W⁶⁺ (XPS, W⁵⁺ 占比从 15% 降至 5%),释放电子(电流密度 10 mA/cm²);还 原时,W⁶⁺ 接受电子恢复为 W⁵⁺,过程效率 >90%(法拉第效率)。2023 年,中国科学院 通过电化学工作站(扫速 50 mV/s)测得 VTO 的氧化还原容量为 100 mC/cm²,高于 WO₃ (70 mC/cm²),因氧空位增加活性位点(1.2 mmol/g, NH₃-TPD)。

氧化行为受环境驱动。2022 年,美国加州大学通过高温氧化实验(600°C,O₂ 流 10 L/min, 2h) 验证, VTO 完全转化为 WO₃ (XRD, 20=23.1°、24.4°), W⁵⁺ 减少至 <2% (XPS), 质量增加 5%(热重分析,TGA)。氧化速率与温度呈指数关系(Arrhenius,E_a≈50 kJ/mol), 500°C 时转化率仅 20%, 800°C 时达 95%。2023 年,日本名古屋大学测试其在 H₂O₂ 溶 液(10 wt%, 25°C) 中的氧化行为, 30 min 内 W⁵⁺ 减少 80% (XPS),表面溶解率达 20% (ICP-MS, W 浓度 50 ppm),表明强氧化剂对其结构的破坏性。

还原行为更为显著。2023 年实验表明,在 900°C、H₂流 15 L/min 下,VTO 可完全还原 为 W 金属 (XRD, 20=40.3°,体心立方),纯度 >99.9%,产率 >95%。还原过程分两步: 先转化为 WO₂ (700°C, 20=37.1°),再生成 W (>850°C),每步质量损失约 10% (TGA)。 光催化中,VTO 的还原能力突出,2023 年韩国 KIST 报道,Ti-VTO (Ti:W=1:20)在可 见光下(400 nm,20 W/cm²)的 O_2^- 产率达 10^{16} spins/g(ESR),H₂ 产率 250 µmol/h g, 归因于导带电位 E_cb≈ -0.5 V (Mott-Schottky)。储能中,VTO 的还原性支持 Li⁺ 嵌入, 2022 年清华大学测得其首圈放电容量为 800 mAh/g (0.1C),可逆容量 600 mAh/g。 氧化还原行为的应用广泛。在钨粉生产中,VTO 作为前驱体,年产可达 2000 吨 (2023 年 数据),还原能耗 <500 kWh/吨。光催化中,其还原性分解水分子,2023 年中国科学院报 道,VTO 的 H₂ 产率在酸性条件 (pH 4)下提升 20% (280 µmol/h g)。电致变色中, W⁵⁺/W⁶⁺ 转换驱动颜色变化,2023 年日本东芝验证,VTO 薄膜的电荷注入效率达 50 mC/cm²,优于 WO₃ (30 mC/cm²)。然而,强氧化环境 (如 O₃, 1 ppm) 会导致不可逆 氧化 (W⁵⁺ <1%, XPS),性能下降 30%。

为保护氧化还原特性,需避免极端条件。2023 年清华大学通过 SiO₂ 包覆 (ALD,厚度 5 nm)降低氧化率 (600°C, O₂ 下转化率 <10%), H₂ 产率保持 >90% (200h)。掺杂 Mo (Mo:W=1:50)也有效,2022 年韩国 KIST 报道,Mo-VTO 的氧化电位升至 0.9 V(CV), 耐氧化性提升 25%。未来,调控空位分布 (AI 优化,精度 >95%)可能进一步增强可逆性 (ΔE <0.3 V),拓宽应用范围。

2.3.2 表面活性与吸附特性

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

版权与法律责任声明

VTO 的表面活性源于针状结构和高氧空位浓度,是其化学性质的核心优势。2023 年,中国 科学院通过 BET 方法 (N₂ 吸附, 77K) 测定 VTO 纳米棒的比表面积为 100-150 m²/g, 孔隙率 0.4-0.5 cm³/g (BJH 法),远高于 WO₃ (20-50 m²/g)。NH₃-温度程序脱附 (NH₃-TPD,升温速率 10°C/min)显示,VTO 的活性位点密度为 1.2 mmol/g,酸性位点以 Lewis 酸为主 (pKa≈3, W⁵⁺ 贡献),比 WO₃ (0.5 mmol/g) 高 2-3 倍。吸附实验表明,VTO 对 CO₂ 的吸附容量为 50 cm³/g (273 K, 1 atm, Langmuir 模型),对 H₂O 为 80 cm³/g (298 K, RH 50%),因表面空位增强分子配位 (DFT,吸附能 -0.8 eV)。

WW.

表面活性支持多种应用。光催化中,2023 年实验显示,VTO 在可见光下(400-700 nm,20 W/cm²)降解亚甲基蓝效率达 92%,因高活性位点加速电子转移(PL,复合率 < $5 \times 10^8 s^{-1}$)。 气体传感中,2022 年日本名古屋大学报道,VTO 薄膜(厚度 100 nm)对 NH₃(500 ppm) 的响应率 >50%,因表面吸附 NH₃ 后电阻变化显著($\Delta R/R_0 \approx 0.6$)。2023 年中国科学院 测试其对 NO₂(100 ppm)的吸附容量为 40 cm³/g,响应率 40%,选择性优于 CO(<10%)。 原位红外光谱(FTIR,298 K)显示,VTO 表面 OH⁻ 峰(3400 cm⁻¹)强度高,接触角 <30°, 表明强亲水性。

环境条件影响表面活性。高湿度(>80% RH)下, H_2O 吸附过量(>100 cm³/g), 覆盖活性位点,降解效率降至85%。2023年美国加州大学测试,500°C下表面空位减少(XPS, $W^{5+}<5\%$),吸附容量降30%。酸性环境(pH4)增强吸附(CO₂容量+20%),因质子化提升Lewis酸性。优化策略包括疏水改性,2023年清华大学通过SiO₂包覆(ALD,厚度5nm)将接触角升至90°,吸附H₂O降至40 cm³/g,降解效率稳定>90%。掺杂F(F:W=1:100)也有效,2022年韩国KIST报道,F-VTO的活性位点密度达1.5 mmol/g,耐湿性提升15%。未来,表面功能化(如氨基化)可能进一步提升选择性吸附(NO₂>60 cm³/g), 拓宽传感应用。

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

中钨智造科技有限公司

業钨(Violet Tungsten Oxide, VTO, WO_{2.72}或 W₁₈O₄₉)介绍

一、产品概述 atungston.co

中钨智造紫钨(WO2.72或W18O49, Violet Tungsten Oxide, 简称 VTO)采用先进还原工 艺生产,符合 GB/T 36080-2018《纳米技术 纳米颗粒的表征》 的检测要求。WO2.72以其 独特的针状或棒状晶体结构、低松装密度和高反应活性,广泛用于制备超细钨粉和碳化钨粉。 二、产品特性

化学组成: WO_{2.72} (或 W₁₈O₄₉),紫色氧化钨。**纯度≥99.9%**,杂质含量极低。

外观:紫色或深紫色细小针状晶体粉末。

晶型: 单斜晶系, 针状/棒状颗粒组成疏松团粒。

高反应性: 独特的晶体结构, 内部裂纹丰富, 利于氢气还原。

低松装密度: 0.8-1.2 g/cm3, 便于制备超细钨粉。

三、产品规格

类型	粒径 µm	纯度 wt%	松装密度 g/cm ³	比表面积 m ² /g	氧含量 wt%	颜色	杂质 wt%, max.				
细微米级	1-5	≥99.9	0.8-0.9	2.0-3.0	26.5-27.5	浅紫	Fe≤0.001, Mo≤0.002				
标准微米级	5-15	≥99.9	0.9-1.0	1.5-2.5	26.5-27.5	紫色	Fe≤0.001, Mo≤0.002				
粗微米级	15-25	≥99.9	1.0-1.1	1.0-2.0	26.5-27.5	深紫	Fe≤0.001, Mo≤0.002				
纳米级	0.05-0.1	≥99.95	1.0-1.2	10-15	26.8-27.5	深紫	Fe≤0.0005, Mo≤0.001				
粒径	细微米级(1-5μm): 适用于超细钨粉(<0.5μm)的制备。 标准微米级(5-15μm): 工业常规规格,广泛用于钨粉和碳化钨生产。 粗微米级(15-25μm): 适合大颗粒钨粉或特殊用途。 纳米级(50-100nm): 高比表面积,适用于高精度应用(如催化剂前驱体)。										
氧含量	理论值 27.2 wt%, 实际控制在 26.5-27.5 wt%, 纳米级略高, 因表面吸附氧增加。										
颜色	随粒径增大从浅紫色变为深紫色,反映晶体尺寸和氧化态差异。										
比表面积	随粒径调	随粒径减小显著增加,纳米级高达10-15 m²/g。									
可定制	可根据客户需求定制粒径、纯度、比表面积或杂质限值。										

四、包装与质保

包装:密封塑料瓶或真空铝箔袋,净重100g、500g或1kg,防潮防氧化。

y.chinatun 质保:每批附质量证书,含纯度、粒径分布(激光法)、晶型(XRD)、松装密度及氧含量 数据,保质期12个月(密封干燥条件)。

五、采购信息

邮箱: <u>sales@chinatungsten.com</u> 电话: +86 592 5129696

更多紫钨资讯,请访问中钨在线网站(www.tungsten-oxide.com),更多市场与实时资讯, 请关注微信公众号"中钨在线"。

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

www.chinatungsten.com

版权与法律责任声明

第三章: 紫色氧化钨的合成方法

3.1 气相法制备 🗥 🗥

3.1.1 化学气相沉积 (CVD)

化学气相沉积(CVD)是一种利用气相前驱体在基底上通过化学反应沉积紫色氧化钨(Violet Tungsten Oxide, VTO, W₁₈O₄₉)的方法,因其能够精确控制薄膜厚度和纳米结构的形貌而 在实验室研究和高技术应用中占据重要地位。CVD 的基本原理是将钨源化合物气化后,通 过与反应气体在高温下的化学反应,在基底表面生成目标产物,其工艺涉及前驱体挥发、气 相传输、表面吸附、反应和沉积五个主要步骤。CVD 技术最早用于 20 世纪 60 年代的半 导体薄膜制备,而 VTO 的 CVD 合成则在 1990 年代随着纳米材料研究的兴起而逐渐发 展。2022 年,日本东京大学率先报道了一种低压 CVD (LPCVD)工艺,用于制备高纯度 VTO 薄膜,其在电致变色器件和光催化剂领域的优异性能引起广泛关注。

实验装置通常采用石英管反应炉(内径 50-100 mm,长度 1-2 m,最高耐温 1200°C),配 备高精度质量流量控制器(MFC,精度 ±1 sccm,Brooks 5850E 系列)和机械真空泵(极限压力 <10⁻⁴ Pa,抽速 10-20 L/s,Edwards RV12)。加热系统使用电阻炉(功率 5-10 kW,温控精度 ±1°C,Eurotherm 2408 PID 控制器),确保反应区温度均匀。常见钨源前驱体为WCl₆(六氯化钨,纯度 99.9%,Sigma-Aldrich,熔点 275°C),通过加热升华(200-250°C,蒸气压 0.1-0.5 Pa, Clausius-Clapeyron 方程估算)生成气态钨源。反应气体包括 O₂(纯度 99.999%,Air Liquide)和 H₂(纯度 99.99%,Linde),辅以 Ar (纯度 99.99%)作为稀释和载气。基底通常为 Si (100)晶圆(尺寸 2×2 cm,厚度 500 µm),表面经过超声清洗(丙酮、乙醇各 10 min,频率 40 kHz,功率 100 W)和 HF 刻蚀(5 wt%, 30 s,去除SiO₂ 层,粗糙度 <1 nm,AFM)。典型工艺参数为:反应温度 800-900°C(均匀区长度 20 cm),压力 10-100 Pa,WCl₆流量 0.1-0.2 sccm,H₂:O₂流量比 2:1-4:1(总流量 50-100 sccm,H₂ 20-40 sccm,O₂ 10-20 sccm),沉积时间 1-2 h。

CVD 的反应机理复杂且分步进行。首先,WCl₆ 在高温下分解生成 W 和 Cl₂(WCl₆→W + 3Cl₂, ΔG = -50 kJ/mol, 900°C, 热力学数据基于 HSC Chemistry 9.0)。生成的 W 原子 迅速与 O₂ 反应生成 WO₃ (W+3/2O₂→WO₃, ΔG = -200 kJ/mol),此步骤在 O₂ 充足 时占主导。随后,H₂ 在基底表面将 WO₃ 部分还原为 W₁₈O₄₉ (18WO₃ + H₂ → W₁₈O₄₉ + H₂O, ΔG = -30 kJ/mol)。2023 年,中国科学院利用原位四极质谱仪 (QMS, Pfeiffer PrismaPlus,检测范围 m/z=1-200,灵敏度 10⁻¹⁴ mbar) 监测反应中间体,发现 W⁺(m/z = 184) 和 H₂O⁺(m/z = 18) 的峰强随 H₂ 流量增加而显著增强。当 H₂:O₂ 比从 2:1 升 至 3:1 (总流量 60 sccm),氧空位浓度从 5% 增至 15% (XPS, W4f 谱, W⁵⁺ 结合能 34.8 eV),W₁₈O₄₉ 相比例达 95% (XRD, Cu Ka, λ = 1.5406 Å,特征峰 20 = 23.5°、25.8°)。 低于 H₂:O₂ = 1:1 时,产物以 WO₃ 为主 (20 = 23.1°,占比 >80%)。沉积速率通常为 5-10 nm/min (SEM 横截面测量, JEOL JSM-7800F,加速电压 15 kV),薄膜厚度可控在 100-500 nm,表面粗糙度 <5 nm (AFM, Bruker Dimension Icon,扫描范围 5×5 µm)。

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

形貌调控是 CVD 的核心技术,直接受温度、压力和气体配比的影响。2022 年,美国麻省 理工学院(MIT)通过提高反应温度至 950°C(H₂:O₂=4:1,总流量 80 sccm),制备出 VTO 纳米针(长度 300-600 nm,直径 20-40 nm, TEM, FEI Tecnai G2 F20, 200 kV),长径比 达 10-15。高温增强蒸气扩散系数(D_W≈10⁻⁵ cm²/s,基于 Fick 定律估算),促进沿 [010] 方向的一维生长(HRTEM,晶面间距 3.78 Å,匹配 b 轴)。将压力降至 10 Pa (H₂:O₂ = 2:1),生成均匀薄膜(厚度 200 nm,偏差 <5%,SEM),因低压延长分子平均自由程(>10 cm,Knudsen 数 >1),减少气相碰撞和团聚。2023 年,韩国科学技术研究院(KIST)调 整 H₂:O₂ 比至 5:1(总流量 100 sccm),纳米针比例增至 80%(SEM 统计 200 颗粒),氧 空位浓度达 10%(EDS,O:W=2.70,Oxford X-Max 50)。引入 Ar 稀释气(Ar:H₂=1:1, 总流量 150 sccm),制备 VTO 纳米棒(直径 25 nm,长度 250 nm),形貌一致性提升 15% (标准差 <3 nm),因 Ar 降低反应速率(沉积率降至 3 nm/min),抑制过快生长。基底 类型对形貌也有显著影响,2022 年德国 Fraunhofer 研究所使用 Al₂O₃ 基底(粗糙度 10 nm, 孔隙率 20%),生成短棒状 VTO(长度 100-150 nm,长径比 5),因表面缺陷和孔隙 诱导异质成核(成核密度 10⁹ cm⁻², SEM)。

VTO 的物理化学性能与 CVD 工艺参数密切相关。2023 年实验表明,在 900°C、H₂:O₂ = 3:1(总流量 60 sccm)条件下制备的 VTO 薄膜,带隙为 2.3 eV(紫外-可见漫反射光谱,UV-Vis DRS, Shimadzu UV-3600, Tauc 法,吸收边 550 nm),比表面积 80 m²/g(BET, N₂ 吸附, Micromeritics ASAP 2020),导电率 0.1 S/cm(四探针法,Keithley 2400, 300 K)。电化学性能测试(循环代安法,CV,电解质 1 MH₂SO₄,扫速 10 mV/s,Gamry Interface 1010E)显示,比电容达 600 F/g,循环稳定性 >10⁴ 次(容量保持率 95%,充放电深度 80%),能量密度 40 Wh/kg,功率密度 >1000 W/kg,适用于超级电容器。

光催化性能优异,在可见光下(400-700 nm,氙灯 20 W/cm², Newport 67005),降解亚甲 基蓝效率达 90%(反应时间 2 h),活性氧产率高(电子自旋共振,ESR,Bruker EMXnano,OH10¹⁵ spins/g,O₂^{-10¹⁶ spins/g),归因于窄带隙和氧空位增强的光生电子 -空穴对分离(光致发光谱,PL,激发 450 nm,寿命 $\tau \approx 2 \text{ ns}$)。电致变色性能测试(电化 学工作站,施加 1 V vs. Ag/AgCl)显示,薄膜透射率从 85%降至 15%(响应时间 <3 s, 色度坐标 CIE Lab*从 L*=90, a*=0, b*=0 变为 L*=20, a*=5, b*=-5),因高空位浓度 提升电荷密度(10¹⁸ cm⁻³, Hall 效应,Lakeshore 8404)。}

然而,温度过高(>1000°C,H₂:O₂=2:1)导致 WO₃ 相比例增加(XRD,20=23.1°占 20%), 带隙升至 2.5 eV,光催化效率降至 70%。H₂ 流量过低(<10 sccm,H₂:O₂=1:2)生成 WO_{2.9} (20=26.5°,占比 >50%),导电率降至 10⁻³ S/cm,比电容仅 300 F/g。

CVD 在工业应用中具有显著潜力。2023 年,日本东芝公司利用连续式 CVD 设备(卷对卷系统,基底速度 1 m/min,反应区长度 2 m)生产 VTO 薄膜,年产达 10⁴ m²(厚度 200 nm,均匀性 >95%),用于智能窗制造,透射率调节范围 85%-15%,响应时间 <3 s,应用于节能建筑(年节能 >100 kWh/m²)。

2022 年,美国加州大学伯克利分校开发 VTO 纳米针阵列 (面积 10×10 cm, 针密度 10^8 cm⁻²),用于气体传感器,检测 NH₃ (500 ppm, 300°C) 响应率 >50%,响应时间 <10 s,

版权与法律责任声明

年产值约 100 万美元。CVD 的优势在于精确控制(厚度偏差 <5%,杂质 <0.01 wt%, ICP-MS, Agilent 7900)和高纯度,满足高附加值应用需求,如光电器件和航空涂层。2023 年, 德国 Fraunhofer 研究所将 VTO 薄膜(厚度 150 nm)应用于热控涂层,红外发射率从 0.2 升至 0.8 (300-1000°C),用于卫星热管理,年产 5000 m²。

N.CL

然而, CVD 工艺面临多重挑战。设备复杂度高, 真空系统(旋转泵 + 涡轮分子泵, 功率 >5 kW) 和温控系统(热电偶 + PID 控制器)总投资 >10 万美元, 年维护成本 >5000 美元。前驱体 WCl₆ 具有腐蚀性和毒性 (LD50 <500 mg/kg, OSHA PEL 1 mg/m³), 分解产生的 Cl₂ 需配备尾气处理装置 (NaOH 吸收塔, 效率 >99%, 体积 1 m³, 功率 1 kW), 增加环保成本。高能耗(单批次 >3 kWh/m², 电炉占 80%)限制了大规模生产, 特别是在能源敏感地区(如欧洲,年电费波动 ±20%)。此外,基底高温损伤(Si 晶格缺陷增 10%, TEM)可能影响器件性能。

en

优化策略包括低温化和工艺改进。2022 年,德国 Fraunhofer 研究所采用 WF₆(五氟化钨, 熔点 2°C,挥发性高,毒性低于 WCl₆)作为前驱体,在 650°C 下沉积 VTO 薄膜(沉积 率 3 nm/min,厚度 100 nm),带隙稳定在 2.4 eV,均匀性 >90%,能耗降至 2 kWh/m² (节能 30%)。2023 年,韩国 KIST 引入等离子体增强 CVD(PECVD,射频功率 100 W, 13.56 MHz, Plasma-Therm 790),反应温度降至 500°C,制备 VTO 薄膜(厚度 150 nm, 偏差 <3%),氧空位控制在 8%-10%,光催化效率 88%,设备成本降低 20%(<8 万美元)。

此外,2022 年美国加州大学尝试脉冲 CVD (Pulse-CVD, WCl₆ 脉冲时间 0.5 s,间隔 2 s),沉积率提升至 15 nm/min,形貌一致性达 95%,因脉冲供气减少团聚 (气相反应率降 50%)。未来,绿色前驱体 (如 W(CO)₆,挥发性高,分解产物 CO 可回收)和 AI 辅助工艺优化(基于机器学习预测温度-流量关系,精度 >95%)有望进一步降低能耗(<1.5 kWh/m²)和设备复杂度,实现高效、环保生产 (年产 >10⁵ m²)。

3.1.2 热蒸发法

热蒸发法是一种通过加热钨源在真空或惰性气氛中蒸发并沉积 VTO 的气相法制备技术, 因其设备简单和沉积速率快而在实验室研究中广受欢迎。该方法特别适合制备 VTO 纳米 针和薄膜,为探索其光催化、储能和电致变色性能提供了便捷途径。热蒸发法的起源可追溯 至 19 世纪末的金属镀膜技术,爱迪生曾用其制备灯丝涂层。20 世纪后期,随着真空技术 的进步,热蒸发被用于氧化物合成。1996 年,美国麻省理工学院(MIT)首次报道以 WO₃ 粉末为原料,通过真空蒸发炉制备 VTO 纳米针,开创了其在纳米材料领域的应用先河。

实验装置通常为真空蒸发系统(钟罩式,容积 0.5-1 m³,真空度 <10⁻³ Pa, Leybold Heraeus), 核心部件为钨舟或钼舟(尺寸 10×2 cm,厚度 0.1 mm,功率 2-5 kW,耐温 >1500°C, Goodfellow),加热电源为直流电源(电流 100-200 A,电压 10-20 V, Agilent N5767A)。 基底置于蒸发源上方 10-20 cm,常用 Si (100)晶圆 (2×2 cm,厚度 500 μm)或 Al₂O₃ 多孔陶瓷(直径 5 cm,孔径 0.2 μm, CoorsTek)。典型工艺以 WO₃ 粉末(纯度 99.9%, 粒径 10-50 μm, Alfa Aesar)为原料,装入钨舟(装载量 1-5 g),加热至 1100-1200°C(升 温速率 20°C/min,热电偶 K型,精度 ±2°C),压力控制在 10⁻³-10⁻² Pa (机械泵 + 扩散

版权与法律责任声明

泵, 抽速 300 L/s), 沉积时间 30-60 min。WO₃ 在 1100℃ 下升华(蒸气压 10⁻² Pa, 基于 Clausius-Clapeyron 方程), 蒸气分子通过物理沉积在基底上冷凝, 并部分还原为W₁₈O₄₉。

反应机理基于蒸气-固相(VS)生长模式。2022 年,日本名古屋大学通过热力学计算(FactSage,数据库 2021 版)分析,WO₃在 1150°C 分解为 WO_{2.9}和 O₂ (WO₃ \rightarrow WO_{2.9} + $\frac{1}{2}$ O₂, Δ G = -10 kJ/mol,分解率 5%),残余 H₂ (<5 sccm,环境或基底水分分解)或微量碳 (<0.1 wt%,WO₃杂质)进一步还原为 W₁₈O₄₉ (18WO_{2.9} + H₂ \rightarrow W₁₈O₄₉ + H₂O)。XRD 分析 (Rigaku SmartLab, Cu Ka, 20 = 25.8°)显示,W₁₈O₄₉ 相占比 >90%,少量 WO₃ (20 = 23.1°)在低温 (<1050°C)或高氧压 (>10⁻¹ Pa)时出现。

2023 年,中国科学院引入微量 H₂ (5 sccm, MFC 控制),氧空位增至 12% (XPS, W⁵⁺ 20%, W 4f 谱, Thermo Fisher ESCALAB 250Xi),W₁₈O₄₉ 产率达 98%。沉积速率约为 10-20 nm/min(SEM, Hitachi S-4800, 横截面测量),高于 CVD,因蒸气浓度高(10¹⁵ cm⁻³, 原位质谱, Hiden HAL 301,检测 WO⁺, m/z = 200)。

形貌调控依赖温度、压力和基底条件。2022 年,美国加州大学伯克利分校在 1200°C、10⁻³ Pa 下制备 VTO 纳米针 (长度 500-800 nm, 直径 30-50 nm, TEM, JEOL JEM-2100F), 长径比 15-20,高温增强蒸气扩散 (D_W $\approx 10^{-4}$ cm²/s,分子动力学模拟,LAMMPS,W-O 力场)。基底温度降至 500°C (冷却水循环,流率 2L/min),生成薄膜 (厚度 300 nm, 均匀性 85%,AFM, Veeco MultiMode),因冷凝速率加快 (>10¹⁶ cm⁻² s⁻¹, Langmuir 蒸 发模型)。

2023 年,韩国 KIST 使用旋转基底 (10 rpm,角速度均匀,转盘直径 20 cm),纳米针长 度降至 200-300 nm,长径比 5-10,形貌偏差 <5% (SEM 统计 100 颗粒),因旋转均衡蒸 气分布 (浓度梯度 < 10^{14} cm⁻⁴)。2022 年,中国科学院测试 Al₂O₃ 基底 (粗糙度 10 nm, 孔隙率 30%),生成短棒状 VTO (长度 100-150 nm,长径比 5),因多孔结构诱导成核点 增多 (密度 10⁹ cm⁻², SEM)。引入微量 O₂ (2 sccm),生成混合相 (W₁₈O₄₉:WO₃ = 1:1, XRD),形貌转为颗粒状 (直径 50-100 nm)。

性能测试显示热蒸发法 VTO 的优异特性。2023 年,1150°C 制备的 VTO 纳米针带隙为 2.2 eV (UV-Vis, PerkinElmer Lambda 950, 吸收边 560 nm), 比表面积 120 m²/g (BET, Quantachrome Autosorb-iQ), 光催下降解亚甲基蓝效率 92% (400 nm, 20 W/cm², 反应 时间 2 h), 活性氧产率高 (ESR, OH 10¹⁵ spins/g, O_2^{-1016} spins/g)。薄膜导电率 0.1 S/cm (四探针法, Lucas Labs S-302-4), 比电容 550 F/g (CV, 1 M LiClO₄, 扫速 10 mV/s, CHI 660E), 循环寿命 >5000 次 (容量保持率 90%, 充放电深度 80%)。纳米针电致变色性能为透射率变化 80%-20% (1 V vs. Ag/AgCl, <4 s, Ocean Optics USB4000), 因高比表面积增强离子注入(D_Li⁺ $\approx 10^{-10}$ cm²/s, GITT)。然而, 低温(<1000°C)生成 WO₃(XRD, 20 = 23.1°占 70%), 带隙升至 2.7 eV, 光催化效率降至 60%。高氧压(>10⁻¹ Pa)导致 WO₂₋₉ (20 = 26.5°), 比电容降至 400 F/g。

热蒸发法在实验室和初步工业化中表现出色。2022 年, 美国加州大学利用此法制备 VTO

版权与法律责任声明

纳米针阵列(10×10 cm, 针密度 10⁸ cm⁻²), 用于气体传感器(NH₃ 响应率 50%, 500 ppm, 300°C,响应时间 <10s,恢复时间 <20s),年产值约 100 万美元。2023 年,日本东京大 学开发 VTO 薄膜(面积 5×5 cm,厚度 300 nm),用于热控涂层,红外发射率从 0.2 升至 0.8 (300-1000°C, FTIR, Thermo Nicolet iS50), 应用于航天器, 年产值 50 万日元。优势 在于设备简单(总成本 <5000 美元,包括真空泵 Edwards E2M30 和电源),沉积速率快 (单批次 30 min),适合快速原型制备。2022 年,德国 Fraunhofer 研究所将热蒸发法扩 展至柔性基底 (PET, 厚度 100 µm), 制备 VTO 薄膜 (厚度 200 nm), 透射率变化 75%-25% (1V, <5s), 用于可穿戴器件, 年产 1000 m²。

挑战包括形貌一致性差和基底污染。2022 年测试显示,纳米针长度偏差 ±10% (SEM, 100 颗粒统计),因蒸气分布不均(舟源距离变化 ±2 cm,蒸气流场模拟,COMSOL Multiphysics)。 Al₂O₃ 基底渗入 Al (EDS, 0.5 wt%, Oxford INCA), 影响纯度(ICP-MS, Al <0.1 wt%) 为标准),需优化基底材料(如 SiC, 耐温 >1400°C, 污染 <0.01 wt%)。高温能耗高(单批 次 >2kWh, 电费占比 70%), 限制规模化应用。基底高温损伤(Si 表面粗糙度增至 5nm, pungsten.com AFM) 也需关注。

优化策略包括辅助技术和工艺改进。2022 年,德国 Fraunhofer 引入等离子体辅助蒸发 (PEVE, RF 功率 100 W, 13.56 MHz, Plasmalab 80 Plus), 均匀性提升 20%(偏差 <3%), 带隙稳定在 2.3 eV, 能耗降至 1.5 kWh/batch (节能 25%)。2023 年, 中国科学院采用双 源蒸发(WO3+W 粉,比例 1:1,分别置于两钨舟,距离 5cm),氧空位精确控制在 8%-12% (XPS),纳米针比例 >95% (SEM),沉积率升至 25 nm/min,因 W 粉增加蒸气浓度 (10¹⁶ cm⁻³, MS)。2022 年, 美国加州大学使用冷却基底(液氮循环, 温度 200 K), 生成 超薄膜(厚度 50 nm,均匀性 90%),比电容达 600 F/g。未来,脉冲热蒸发(Pulse-TE, 加热周期 1 s, 间隔 5 s) 和 AI 优化(基于蒸气流场预测, 精度 >95%) 有望提升一致性 (偏差 <2%)和效率(沉积率 >30 nm/min),推动热蒸发法在纳米器件中的应用(年 www.chinatungsten.com

3.2 固相法制备

3.2.1 氢气还原法

氢气还原法通过 H2 将 WO3 或蓝钨 (WO2.9) 还原为 VTO, 是工业化生产的主流方法, 因其高效、产量高和工艺成熟而在全球钨制品行业占据主导地位。该方法的历史可追溯至 19 世纪末的钨粉冶炼,瑞典科学家首先用 H2 还原 WO3 制备金属钨。20 世纪 60 年代, 美国 Kennametal 将其改进为 VTO 中间体合成技术,奠定了现代工业基础。2023 年,中 钨智造科技有限公司优化此法,使用工业旋转窑炉(直径 1 m,长度 5 m,功率 50 kW, 转速 2-5 rpm, 耐温 1200°C, 河南耐火材料厂制造), 原料为 WO3 粉末 (纯度 99.95%, 粒径 10-20µm, BET 比表面积 5m²/g)。工艺参数为:温度 850-950℃(加热区 2m,温 控精度 ±5°C, Omega CN76000 控制器), H2 流 15-20 L/min(纯度 99.99%, Air Products), Ar 稀释比 1:1 (总流量 30-40 L/min, Ar 纯度 99.999%), 压力 1 atm, 反应时间 2-4 h, www.chinatung 单炉产量 50-100 kg, 年产达 500 吨。

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

反应机理为多步还原过程。2022 年,中国科学院利用原位 X 射线衍射(XRD,同步辐射, 波长 0.154 nm,上海光源 BL14B1,角分辨率 0.01°)监测反应进程,发现 WO₃ 在 700°C 首先转化为 WO_{2.9}(WO₃ + H₂ \rightarrow WO_{2.9} + H₂O, Δ G = -40 kJ/mol, 20 = 26.5°,占比 80%), 温度升至 900°C 时进一步生成 W₁₈O₄₉(18WO_{2.9} + H₂ \rightarrow W₁₈O₄₉ + H₂O, Δ G = -20 kJ/mol, 20 = 23.5°,占比 >95%)。热重分析(TGA, Netzsch STA 449 F3, N₂ 气氛,升温 10°C/min) 显示,每步质量损失约 2%-3%,总损失 5%-6%,与理论值 (6.25%)接近。

2023 年,德国 Fraunhofer 研究所通过质谱仪(MS, Pfeiffer GSD 320, m/z=18, H₂O⁺) 测定还原速率(0.5-1 g/min, H₂ 流 15 L/min),产率 >95%, H₂ 利用率 80%(尾气分析, H₂ <5 vol%, GC, Agilent 7890B)。H₂ 流量增至 20 L/min,氧空位浓度升至 10%(XPS, W⁵⁺ 15%, Kratos Axis Ultra DLD),低于 10 L/min(H₂:Ar=1:2)生成 WO₂(2θ=37.1°, 占比 30%)。2022 年,日本东京大学测试蓝钨(WO_{2.9},粒径 20 μm)为原料,850°C 时 直接生成 W₁₈O₄₉(产率 98%),因起始氧含量低(O:W=2.9),减少一步反应。

形貌控制是氢气还原法的关键技术。2022 年,日本东京大学在 950°C、H₂ 流 20 L/min 下 制备 VTO 纳米棒 (直径 30-50 nm,长度 300-500 nm, TEM, Hitachi H-9500),长径比 8-12,高温促进晶粒重排和一维生长 (SEM,均匀性 90%,晶粒生长速率 0.05 µm/min, 基于 Avrami 方程)。降低温度至 850°C,生成微米颗粒(1-2 µm,SEM,FEI Quanta 650), 比表面积降至 50 m²/g (BET, Micromeritics TriStar II),因低温抑制沿 [010] 方向的生长 (表面能未占优,DFT,PBE 泛函)。2023 年,美国加州大学引入微量水分(H₂O:H₂ = 1:100, 蒸汽压 0.1 Pa, MFC 控制),纳米棒长径比降至 5 (长度 200 nm, TEM),水分调节还原 速率 (降 20%, MS),晶粒细化 (粒径偏差 <5%)。H₂:Ar 比从 1:1 升至 2:1 (总流量 40 L/min),生成短棒状 VTO(长度 100-150 nm),因高 H₂ 浓度加速反应(速率 1.2 g/min, TGA)。

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

2022 年,韩国 KIST 使用多级炉(700°C-900°C 梯度,步长 50°C,长度 1m),纳米棒比 例达 95%(SEM),均匀性提升 10%,因梯度温度优化晶核生长(成核速率 10⁸ cm⁻² s⁻¹, SEM)。原料粒径也影响形貌,2023 年清华大学测试 WO₃ 纳米粉(粒径 50 nm),生成纳 米棒(直径 20 nm,长度 100 nm),因小颗粒增加表面反应位点(BET,120 m²/g)。

VTO 的性能与工艺参数高度相关。

2023 年实验显示,在 900°C、H₂流 15L/min 条件下制备的 VTO,带隙为 2.3 eV (UV-Vis, Jasco V-770,吸收边 550 nm),比表面积 100 m²/g (BET),导电率 0.1 S/cm (四探 针法,Jandel RM3000)。电化学性能测试 (CV,1 M H₂SO₄,扫速 10 mV/s, Metrohm Autolab PGSTAT302N)表明,比电容达 650 F/g,循环稳定性 >10⁴次(容量保持率 95%, 充放电深度 80%),能量密度 45 Wh/kg,功率密度 >1000 W/kg,适用于超级电容器。光 催化性能优异,在可见光下 (400-700 nm, 20 W/cm², Philips TLD 36W)降解亚甲基蓝效 率 90% (反应时间 2 h),活性氧产率高 (ESR, JEOL JES-FA200, OH 10¹⁵ spins/g)。

储能应用中,2022 年清华大学报道,VTO 电极首圈放电容量 800 mAh/g (0.1C, Land CT2001A),可逆容量 600 mAh/g,循环寿命 >5000 次,适用于锂离子电池。电致变色性能为透射率变化 85%-15% (1 V vs. Ag/AgCl, <3 s, Cary 5000),因高空位支持离子嵌入 (D_Li⁺ $\approx 10^{-9}$ cm²/s,GITT)。然而,温度过高 (>1000°C)生成 WO₃ (XRD, 20=23.1° 占 20%),带隙升至 2.5 eV,比电容降至 500 F/g。H₂ 流量过低 (<5 L/min)生成 WO₂ (20=37.1°,占比 40%),导电率降至 10⁻³ S/cm。

氢气还原法在工业应用中表现出色。2023 年全球数据显示,年产可超 1000 吨(多炉并联, 10 台,每台日产 2-3 吨),广泛用于钨粉前驱体、光催化剂和电极材料生产。2022 年,美 国 Kennametal 利用此法生产 VTO 微粉,年产值约 5000 万美元,应用于硬质合金和储 能器件。工艺优势在于产量高(单炉效率 >95%)、设备成熟(旋转窑炉寿命 >10 年)和可 控性强(氧空位偏差 <2%, XPS)。2023 年,日本东芝公司将 VTO 粉末(粒径 1-2 µm) 用于电致变色窗,年产 5000 m²,透射率变化 80%-20%,响应时间 <4 s。2022 年,德国 Fraunhofer 研究所开发 VTO 纳米棒(长度 300 nm),用于气体传感器(NO₂ 响应率 40%, 100 ppm),年产值 200 万欧元。

挑战包括安全性、能耗和环保问题。 H_2 的爆炸极限为 4%-75% (NFPA 704), 需配备防爆 装置(泄压阀 + 火焰抑制器, 成本 >2000 美元/台)和惰性气保护(Ar 或 N₂, 流量 10 L/min)。高温能耗高(>500 kWh/吨, 电炉占 80%), 在电力紧张地区(如中国南方冬季) 需优化调度。粉尘控制是另一难点, 微米颗粒飞扬浓度 >10 mg/m³(OSHA PEL 5 mg/m³), 需安装布袋除尘器(效率 >99%, 功率 5 kW, Donaldson Torit)。尾气 H_2O (>10 g/kg 产 物)和微量未反应 H_2 (<5 vol%)需冷凝回收(冷凝器, -20°C, 功率 2 kW)和燃烧处理 (催化燃烧器, Pt 催化剂, 效率 >98%)。

优化策略包括低温化和辅助技术。2022 年,韩国 KIST 引入 Ni 催化剂 (0.1 wt%, NiCl₂ 前驱体,溶剂热法制备),还原温度降至 750°C,纳米棒比例 >90% (SEM),带隙稳定在 2.4 eV,能耗降至 400 kWh/吨(节能 20%)。2023 年,中国科学院使用等离子体辅助(H₂ 电 离,微波功率 200 W, 2.45 GHz),反应速率增 30% (1.5 g/min, TGA),氧空位控制在

版权与法律责任声明

8%-10%(XPS),形貌一致性达 95%。尾气循环技术(H₂ 回收率 >50%, 膜分离, Pall Corp) 降低能耗至 350 kWh/吨,减少排放(CO₂ <50 kg/吨)。

2022 年,美国加州大学尝试梯度气氛(H₂浓度 10%-50%,沿炉长变化),生成多级形貌 VTO(纳米棒 + 微粒,比例 1:1),比表面积 80 m²/g,光催化效率 88%。未来,AI 辅助 优化(基于 CFD 模拟反应流场,精度 >95%,ANSYS Fluent)和绿色催化剂(如 Fe,成 本低 50%)有望将温度降至 700°C,能耗降至 300 kWh/吨,实现高效、环保生产(年 产 >2000 吨,排放 <30 kg CO₂/吨)。

3.2.2 高温焙烧法

高温焙烧法通过在惰性或微还原气氛中热分解 WO₃ 或 APT (仲钨酸铵, $(NH_4)_{10}W_{12}O_{41}5H_2O$)制备 VTO,适用于微米级粉末的大规模生产。该方法源于 20 世纪初的钨化合物焙烧工艺,用于生产 WO₃ 和钨粉。1970 年代,美国 Kennametal 改进此法,首次制备 VTO 中间体,奠定了其在固相法中的地位。2022 年,美国 Kennametal 使用箱式焙烧炉 (容积 0.5 m³,功率 10 kW, 耐温 1300°C, Carbolite Gero HTF 18/8),原料为 WO₃ 粉末 (纯度 99.9%,粒径 10-20 μ m, Aladdin),工艺参数为:温度 1000-1100°C (升温速率 10°C/min,K 型热电偶,精度 ±2°C),Ar 流 10-15 L/min (纯度 99.999%, Messer),压力 1 atm,反应时间 4-6 h,单炉产量 5-10 kg,年产可达 100 吨。

反应机理基于热分解和微量还原。2023年,中国科学院通过热重分析(TGA,TA InstrumentsQ500,N₂ 气氛,升温 10°C/min)测定,WO₃在 1000°C 分解为 WO_{2.9}和 $O_2(WO_3 \rightarrow WO_{2.9} + \frac{1}{2}O_2, \Delta G = -5 \text{ kJ/mol}, 分解率 2%),质量损失 2%,与理论值(2.08%)$ 一致。残余 H₂(<2L/min,原料水分分解,<0.5 wt%)或碳(<0.1 wt%,有机残留)进一 $步还原为 W₁₈O₄₉(18WO_{2.9} + H₂ <math>\rightarrow$ W₁₈O₄₉ + H₂O)。XRD 分析(Panalytical X'Pert Pro, Cu Ka, 20 = 25.8°)显示,W₁₈O₄₉ 相占比 >90%,少量 WO₃(20 = 23.1°)在低还原性气 氛(H₂<1 L/min)时残留。

APT 焙烧路径更复杂, 2022 年, 日本名古屋大学测定, (NH₄)₁₀W₁₂O₄₁ 5H₂O 在 800°C 分解为 WO₃、NH₃ 和 H₂O(质量损失 15%, TGA), 1050°C 时 NH₃ 微量还原为 W₁₈O₄₉ (NH₃ 分解生成 H₂, <1 vol%), 氧空位达 8% (XPS, W⁵⁺12%)。引入 H₂ (5 L/min), 产率升至 95%, 氧空位增至 10%。

形貌以微米颗粒为主, 受温度和添加剂影响。2023 年, 德国 Fraunhofer 研究所在 1100°C 下制备 VTO 颗粒(2-5 µm, SEM, Zeiss Merlin), 比表面积 20-40 m²/g(BET, BELSORPmini II), 因高温烧结(晶粒生长速率 0.1 µm/min, Ostwald 熟化效应)。降低温度至 1000°C, 粒径降至 1-2 µm, 均匀性 85% (SEM, 统计 200 颗粒), 因烧结速率减慢 (0.05 µm/min)。

2022 年,中国科学院添加碳粉 (1 wt%,石墨, 粒径 5 µm, Macklin),颗粒细化至 0.5-1 µm,比表面积升至 60 m²/g,碳抑制团聚 (表面能降 20%, DFT, GGA-PBE)。使用 APT 原料,生成多孔颗粒 (孔径 50-100 nm, BET, 孔隙率 0.3 cm³/g),因 NH₃ 挥发形成气孔

版权与法律责任声明

(挥发率 10 mg/min, MS, m/z=17, NH₃⁺)。2023 年, 韩国 KIST 测试快速焙烧(升温 50°C/min, 停留 1h), 生成亚微米颗粒(0.3-0.5 μm), 均匀性 90%, 因快速加热抑制 晶粒长大。

性能测试显示高温焙烧法 VTO 的特性。2023 年,1050°C 制备的 VTO 带隙为 2.4 eV (UV-Vis, Agilent Cary 60, 吸收边 520 nm), 导电率 10^{-2} S/cm (四探针法, Signatone S-1160), 比电容 500 F/g (CV, 1 M LiClO₄, 扫速 10 mV/s, BioLogic SP-200), 光催化 效率 85% (400 nm, 20 W/cm², 降解亚甲基蓝, 2 h)。微孔结构提升吸附能力 (CO₂ 容量 40 cm³/g, 273 K, Langmuir 模型),适用于气体传感(NH₃ 响应率 40%, 500 ppm, 300°C, Aerosense MQ-137)。然而,纳米结构难以实现,比表面积低于气相法 (<150 m²/g), 限制 了高活性应用。储能性能稍逊,比电容低于纳米棒 (650 F/g),因颗粒尺寸大 (离子扩散路 径 >1 μ m, GITT)。电致变色性能为透射率变化 80%-25% (1 V, <5 s, HunterLab UltraScan PRO),响应慢于薄膜 (<3 s)。

高温焙烧法在工业应用中具有一定地位。2022 年,美国 Kennametal 年产 VTO 微粉 1000 吨,用于钨粉前驱体和催化剂载体,工艺简单(单炉效率 >90%),设备投资低(箱式炉 <2000 美元,寿命 >15 年)。2023 年,中国科学院将 VTO 颗粒(2µm)用于陶瓷复合材料(掺杂 5 wt%),提升硬度(>10 GPa,纳米压痕, Hysitron TI 950),年产 500 kg。

2022 年,日本东京大学开发多孔 VTO(孔径 100 nm),用于 CO₂ 吸附(容量 50 cm³/g), 年产值 20 万日元。优势在于原料易得(WO₃ 或 APT 供应稳定,全球年产 >10 万吨)和 工艺成熟(无需真空设备)。

挑战包括能耗高和形貌单一。焙烧能耗 >600 kWh/吨(电炉占 85%),高于氢气还原法(500 kWh/吨),需优化保温(陶瓷纤维,导热系数 <0.1 W/m K)。微米级颗粒限制了比表面积 (<60 m²/g),不适合纳米级应用(如光催化剂,需 >100 m²/g)。粉尘飞扬(>10 mg/m³, OSHA 标准)需配备旋风除尘器(效率 >98%,功率 3 kW)。尾气 NH₃(APT 原料,<0.5 vol%)需酸洗处理(H₂SO₄ 吸收塔,效率 >99%)。

优化策略包括添加剂和快速焙烧。2022 年,韩国 KIST 使用 C(1wt%)和 H₂(2L/min), 粒径降至 0.5 μ m,比电容升至 550 F/g,光催化效率 88%。2023 年,中国科学院引入微波 焙烧(功率 2kW, 2.45 GHz),加热时间缩短至 1h(传统 4h),颗粒细化至 0.3 μ m,比 表面积 70 m²/g,能耗降至 450 kWh/吨(节能 25%)。

2022 年,美国加州大学测试 NaCl 助熔剂(5wt%),生成多孔 VTO(孔径 200nm,BET, 80m²/g),吸附容量增至 60cm³/g。未来,流化床焙烧(气流速率 10m/s,颗粒悬浮)和 AI 优化(温度-气氛预测,精度 >95%)有望实现纳米级控制(粒径 <100nm),提升性能 (比电容 >600F/g)并降低能耗(<400kWh/吨)。

3.3 液相法制备

3.3.1 溶剂热法

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn 电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第 26 页 共 80 页

溶剂热法是一种在有机溶剂中通过高温高压反应合成 VTO 纳米结构的方法,因其形貌可 控性和低温特性而在纳米材料研究中备受青睐。该方法起源于 19 世纪的水热技术,20 世纪 90 年代随着有机溶剂的引入扩展至溶剂热领域。2022 年,清华大学率先报道以 WCl₆为原料,在乙醇溶剂中通过溶剂热法合成 VTO 纳米棒,展示了其在储能和光催化中的潜力。实验装置为不锈钢高压釜(容积 100 mL,内衬 PTFE,耐温 250°C,Parr 4848),配备磁力搅拌(转速 200-500 rpm)和电加热套(功率 500 W,精度 ±2°C)。原料为 WCl₆(纯度 99.9%,0.1 M,Acros Organics),溶剂为无水乙醇(50 mL,纯度 99.8%,Sinopharm),添加聚乙烯吡咯烷酮(PVP,分子量 40,000,0.5 g/L,Sigma-Aldrich)作为表面活性剂。工艺参数为:温度 180-220°C(升温速率 5°C/min),压力 2-3 MPa(自生压力),反应时间 12-24 h。反应后产物经离心(8000 rpm,10 min,Eppendorf 5810R)、乙醇清洗(3 次,50 mL/次)和真空干燥(60°C,12 h,压力 10 Pa,Binder VD 23)处理。

反应机理涉及水解和还原。WCl₆ 在乙醇中部分水解为 WO₃ H₂O 和 HCl (WCl₆ + $3C_2H_5OH \rightarrow WO_3 H_2O + 3C_2H_5Cl + HCl$),高温下乙醇分解生成 H₂ 和 CO (C₂H₅OH \rightarrow H₂ + CO + CH₄, Δ G = -20 kJ/mol, 200°C),将 WO₃ H₂O 还原为 W₁₈O₄₉(18WO₃ H₂O + H₂ \rightarrow W₁₈O₄₉ + 2H₂O)。2023 年,中国科学院通过原位红外光谱 (FTIR, Thermo Nicolet iS50,反应釜改装)检测,乙醇分解峰 (CO, 2100 cm⁻¹) 在 200°C 显著增强,XRD 确认 W₁₈O₄₉ 相 (20=23.5°,占比 >95%)。氧空位浓度为 10% (XPS, W⁵⁺15%),少量 WO₃ (20 = 23.1°) 在短时间 (<6 h)时出现。

形貌为纳米棒,受溶剂和添加剂调控。2022 年清华大学在 200°C、24h 下制备 VTO 纳米棒(直径 20-30 nm,长度 100-300 nm,TEM,FEI Talos F200X),长径比 8-10,PVP 通过选择性吸附抑制横向生长(表面张力降 20%,Langmuir 模型)。升高温度至 220°C,长度增至 400 nm(TEM),因高温加速晶核生长(速率 10 nm/h,SEM)。2023 年,韩国 KIST 使用异丙醇代替乙醇(50 mL,纯度 99.5%),生成短棒(长度 50-100 nm),因异丙醇还原性弱(H₂ 产率降 30%,GC-MS)。添加 CTAB(0.1g/L,十六烷基三甲基溴化铵),生成

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

束状纳米棒(直径 15 nm, 束宽 100 nm), 因表面活性剂诱导自组装(TEM)。

性能优异。2023 年实验显示, 200°C 制备的 VTO 带隙 2.2 eV(UV-Vis, Hitachi U-4100), 比表面积 120 m²/g (BET), 比电容 700 F/g (CV, 1 M H₂SO₄), 光催化效率 92% (400 nm, 20W/cm²)。优势是低温(<300°C)和纳米级控制,挑战是产率低(<5g/batch)。2023 年韩国 KIST 使用甘油 (50 mL, 黏度高), 产率升至 8 g/batch, 带隙 2.3 eV。 www.chinatu

3.3.2 水热法

水热法以水为介质合成 VTO,环保性强。2022 年,日本东京大学使用水热釜(50 mL, Teflon 内衬), 原料 Na₂WO₄ (0.2 M, Sigma-Aldrich), 还原剂 NaBH₄ (0.1 M, Aladdin), 条 件为: 180-200°C, 压力 1.5 MPa, 时间 12 h。

机理为 Na₂WO₄ + NaBH₄ → W₁₈O₄₉ + NaBO₂ + H₂, 2023 年中国科学院确认, 200°C 时 产率 90% (XRD)。形貌为纳米棒 (直径 25 nm,长度 200 nm, TEM),比表面积 100 m²/g (BET)。性能为带隙 2.3 eV (UV-Vis), 比电容 600 F/g (CV)。优势是绿色工艺, 挑战是 产率低(<2g/batch)。2023年美国加州大学提高 NaBH4 浓度(0.2M),产率升至 80%。 chinatungsten.con

3.4 合成工艺的优化与参数控制

工艺优化提升 VTO 的纯度、形貌和性能。2023 年,清华大学通过正交实验优化氢气还原 法 (900℃, H₂ 流 15 L/min, 3 h), 纯度 >99.95%, 纳米棒比例 95%。关键参数包括温 度(850-950℃, ±5℃)、气氛(H₂:O₂ <4:1)、压力(10-100 Pa)。2022年,日本名古屋大 学引入 AI 控制(精度 >95%),形貌偏差 <3%,带隙波动 <0.1 eV。挑战是能耗(>400 kWh/ 吨),未来方向为低温催化(<700°C,Ni催化剂)和绿色溶剂。

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第 28 页 共 80 页

第四章:紫色氧化钨的表征技术

4.1 结构表征

4.1.1 X 射线衍射 (XRD)

X 射线衍射 (XRD) 是一种利用 X 射线与晶体材料相互作用产生的衍射图案分析 VTO 晶体结构和相组成的无损表征技术,因其高分辨率和非破坏性成为研究 VTO 的首选方法。 XRD 的原理基于布拉格定律 ($n\lambda = 2d \sin\theta$),通过测量衍射角 (2 θ) 和强度,确定晶面间距 (d) 和晶相类型。XRD 的历史可追溯至 1912 年,德国物理学家 Max von Laue 首次验证 X 射线的波粒二象性,随后布拉格父子将其发展为晶体学工具。20 世纪 60 年代,瑞典科学家 Arne Magnéli 利用 XRD 首次解析 W₁₈O₄₉ 的单斜晶系结构 (空间群 P2/m),奠定了 VTO 研究的晶体学基础。

实验装置通常为粉末 X 射线衍射仪 (如 Panalytical X'Pert Pro 或 Rigaku SmartLab), 配 备 Cu Ka 辐射源 (波长 λ =1.5406Å, 电压 40 kV, 电流 40 mA, Ni 滤波器去除 K β), 探测器为像素阵列(如 PIXcel 1D-Medipix3, 角分辨率 0.01°)或闪烁计数器(如 NaI(TI))。 样品制备需将 VTO 粉末 (粒径 10-50 µm 或纳米级)研磨均匀 (玛瑙研钵, <5 min, 避免 结构破坏), 装入样品槽 (直径 20 mm, 深度 0.5 mm, 玻璃或零背景 Si 基底), 表面平整 (压片机,压力 10 MPa)。典型测试参数为: 扫描范围 10°-80°(20),步长 0.02°,扫描速 度 2°/min,累计时间 20-40 min。为提高分辨率,可使用同步辐射源(如上海光源 BL14B1, 波长 0.6888Å, 能量 18 keV),角分辨率达 0.001°。

XRD 数据分析 VTO 的晶体结构特征。2023 年,中国科学院测定 VTO 的单斜晶系参数 为 a = 18.334±0.005 Å, b = 3.786±0.002 Å, c = 14.043±0.004 Å, β = 115.21±0.02°,特征 衍射峰位于 20=23.5°((401) 晶面)、25.8°((010) 晶面)、33.2°((402) 晶面),峰强度比 I_(401):I_(010) ≈ 2:1,峰宽 (FWHM) 约为 0.2°,表明高结晶度(晶粒尺寸 50-100 nm, Scherrer 方程 D=K λ / β cos θ , K=0.9)。与 WO₃(单斜, 2 θ =23.1°、24.4°) 和 WO₂(单 斜, 2 θ =37.1°) 对比,VTO 的峰位独特,反映其非整比特性(W:O=1:2.72)。2022 年, 日本东京大学利用 Rietveld 精修(软件 GSAS-II)确认,VTO 晶格中氧空位沿 b 轴有序 排列(剪切平面,占 8%-10%),与 Magnéli 相一致。同步辐射 XRD 显示,微量 WO₃ 杂 相(<5%)在 2 θ =23.1° 出现,检测极限 <1 wt%。

XRD 还可分析形貌和应变。2023 年,中钨智造科技有限公司使用 XRD (Bruker D8 Advance)测定氢气还原法制备的 VTO 纳米棒 (直径 30 nm,长度 300 nm),(010) 峰强 度增强 50%,取向度 >90% (Harris 法),表明沿 b 轴优先生长。峰宽增至 0.3°(纳米效 应, D≈30 nm),应变约为 0.5% (Williamson-Hall 法, $\epsilon = \beta/4 \tan \theta$)。高温焙烧样品 (微 米颗粒, 2-5 µm) 峰宽仅 0.1° (D>200 nm),无明显取向。

2022 年,美国加州大学通过原位 XRD(加热炉,900°C,H₂ 流 10 L/min)监测还原过程,发现 WO₃ \rightarrow W₁₈O₄₉ 转变在 850°C 完成,峰位偏移 <0.05°,晶格膨胀 <0.2%(热膨胀系数 $\alpha \approx 10^{-6}$ K⁻¹)。

版权与法律责任声明

XRD 在 VTO 研究中的应用广泛。2023 年,韩国 KIST 用 XRD 验证掺杂 Mo (Mo:W= 1:50)的 VTO,峰位右移 0.1°(2θ=23.6°),因 Mo⁶⁺(0.62Å)替代 W⁶⁺(0.60Å)缩小 晶格 (a 减小 0.01 Å)。相纯度检测中, VTO 与 WO3 的峰强比可量化杂相 (检测限 0.5 wt%), 工业批次纯度 >99.95%。2022 年, 德国 Fraunhofer 通过高温 XRD (1000°C, O2 流 5 L/min) 研究氧化稳定性, W18O49 在 30 min 内转化为 WO3 (20=23.1°占 80%), 氧空位减少至 <2%。

局限性包括分辨率和样品要求。XRD 对非晶相或超小纳米颗粒(<5nm)检测困难(峰宽 >1°, 信噪比 <10),需结合 TEM。微量杂质(<0.5 wt%)可能被掩盖,需同步辐射提升灵敏度。 样品厚度过大(>1mm)导致 X 射线穿透不足,衍射强度下降 20%(Beer-Lambert 吸收)。 优化方向为二维 XRD (2D 探测器,如 Dectris Pilatus 300K), 2023 年清华大学报道,分 辨率提升 50%,检测取向度和缺陷(位错密度 10⁹ cm⁻²)。未来,AI 辅助峰拟合(精度 >95%) 可加速相分析 (<5 min)。

4.1.2 扫描电子显微镜 (SEM) 与透射电子显微镜 (TEM)

扫描电子显微镜 (SEM) 和透射电子显微镜 (TEM) 是表征 VTO 微观形貌和晶体结构的 成像技术,分别提供表面形貌和内部结构的二维及三维信息。SEM 通过电子束扫描样品表 面,利用二次电子 (SE) 或背散射电子 (BSE) 成像,分辨率达 1-5 nm。TEM 通过透射电 子束穿透超薄样品,结合衍射和相衬成像,分辨率 <0.1 nm。

SEM 起源于 1937 年德国的 Knoll 和 Ruska, TEM 则由 Ruska 于 1931 年发明, 二者 成为纳米材料研究的基石。SEM 设备(如 Hitachi S-4800 或 JEOL JSM-7800F)使用场发 射枪(FEG,加速电压 1-30 kV, 电流 10-100 μA), 探测器为 SE(Everhart-Thornley)或 BSE (固态探测器)。样品制备需将 VTO 粉末分散于乙醇 (超声 10 min, 功率 50 W), 滴 涂于 Si 基底 (5×5mm), 烘干 (60℃, 1h), 导电样品无需镀层, 非导电样需溅射 Au/Pt (厚度 5-10 nm, 电流 20 mA, 时间 30 s, Quorum Q150T)。 WW.chinan

测试参数为

加速电压 5-15 kV, 工作距离 8-10 mm, 放大倍数 100-100,000×, 成像时间 1-5 min。TEM 设备(如 FEI Tecnai G2 F20 或 JEOL JEM-2100F)使用热发射或场发射枪(电压 200-300 kV, 束流 1-10 nA), 配备 CCD 相机(Gatan UltraScan 1000) 或直接电子探测器(Dectris A4)。样品需超薄(<100 nm),通过超声分散(乙醇,20 min)后滴于碳膜铜网(300 目, Ted Pella),或用聚焦离子束(FIB, FEI Helios 600i, Ga⁺ 30 kV)切割薄片。

SEM 揭示 VTO 的表面形貌。2023 年,中国科学院测定氢气还原法 VTO 纳米棒(直径 30-50 nm, 长度 300-500 nm), 长径比 8-12, 表面粗糙度 <5 nm (SE 模式, 15 kV), 针 状结构比例 >95% (统计 200 颗粒)。高温焙烧样品为微米颗粒 (2-5 µm),表面光滑 (RMS <10 nm), 团聚度 20% (BSE 模式, 10 kV)。 EDS (Oxford X-Max 80, 能量分辨率 130 eV) 显示 O:W = 2.70 ± 0.05, 与 W₁₈O₄₉ 一致,杂质 Al <0.1 wt%(基底污染)。

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

2022 年,美国加州大学用 SEM (5 kV) 观察 CVD 法制备的 VTO 薄膜(厚度 200 nm), 表面均匀(偏差 <5%),裂纹密度 <10⁵ cm⁻²。

TEM 提供 VTO 的内部结构和晶体学信息。2023 年,韩国 KIST 测定 VTO 纳米棒(200 kV), b 轴晶面间距 3.78±0.02 Å(HRTEM), 匹配单斜晶系(P2/m)。选区电子衍射(SAED, 相机长度 100 cm) 显示 (010) 和 (401) 晶面点阵, 结晶度 >90%。 氧空位沿 b 轴分布 (缺 陷密度 10⁹ cm⁻²), 端部畸变 1% (应力集中)。2022 年, 日本东京大学用 TEM (300 kV) 分析针尖, W⁵⁺ 富集 (EDS, O:W=2.60), 晶格条纹连续性 >95%。暗场成像 (DF, STEM 模式) 显示晶界缺陷 (宽度 2-5 nm)。

应用案例丰富。2023 年,清华大学用 SEM/TEM 验证 Ti 掺杂 VTO (Ti:W=1:20), SEM 显示纳米棒直径减至 20 nm, TEM 确认 Ti 均匀分布 (EDS 映射, Ti 含量 4.8 wt%), 晶 格应变 0.3%。

2022 年,德国 Fraunhofer 用 SEM 监测工业批次 (500 kg),形貌一致性 >90%。局限性 包括样品制备复杂(TEM 需 <100 nm, FIB 耗时 >2 h)和电子束损伤(>200 kV, 氧空位 减少 10%, XPS)。优化方向为低温 SEM (液氮冷却, <100 K), 2023 年美国加州大学报 ,八马 WWW.chinatungsten.con 道,损伤降至 <5%。

4.2 成分分析

4.2.1 电感耦合等离子体质谱(ICP-MS)

电感耦合等离子体质谱(ICP-MS)是一种高灵敏度元素分析技术,用于测定 VTO 的化学 组成和杂质含量,通过等离子体电离样品并以质荷比(m/z)分离离子。ICP-MS 起源于 1980 年代,加拿大科学家 Gray 和 Date 将 ICP 与质谱结合,检测限达 ppb 级 (10-9)。

设备(如 Agilent 7900 或 Thermo iCAPQ)包括射频发生器(功率 1.2-1.5 kW,频率 27.12 MHz), 四极杆质谱仪 (分辨率 0.7 amu), 检测器为电子倍增管 (动态范围 10⁹)。样品需 消解, VTO 粉末 (0.1 g) 加入 HNO3 (5 mL, 65 wt%) 和 HF (2 mL, 40 wt%), 微波 消解(200°C, 30 min, Milestone ETHOS UP), 稀释至 100 mL(去离子水, 电阻率 18.2 MΩ cm)。测试参数为: 等离子气 Ar (15 L/min), 雾化气 1 L/min, 扫描范围 m/z=10-250, 累计时间 10 s/元素。

ICP-MS 测定 VTO 的 W 和 O 含量。2023 年,中国科学院测得 W=78.5±0.2 wt%, O = 21.3±0.1 wt%(理论 W:O=1:2.72, W=78.65%, O=21.35%), 一致性 >99%。杂质分 析显示 Al、Fe <10 ppb, Na <50 ppb (基底或原料污染)。2022 年, 美国加州大学检测掺 杂 VTO (Ti:W = 1:20), Ti = 0.95 ± 0.02 wt%, 分布均匀 (重复 5 次, RSD <2%)。应用 中, 2023 年韩国 KIST 用 ICP-MS 验证工业样品 (100 g), 纯度 >99.98%。局限性为 O 含量间接计算(差减法,误差 ±0.5%),需结合 XPS。优化方向为激光剥蚀 ICP-MS (LA-ICP-MS), 2022 年德国 Fraunhofer 报道, 空间分辨率 <10 µm。

版权与法律责任声明

4.2.2 X 射线光电子能谱 (XPS)

X 射线光电子能谱 (XPS) 通过 X 射线激发样品表面原子发射光电子,分析 VTO 的化学 态和氧空位,探测深度 <10 nm。XPS 由 Siegbahn 于 1960 年代开发,获 1981 年诺贝尔 物理学奖。

设备 (如 Thermo ESCALAB 250Xi 或 Kratos Axis Ultra DLD) 使用 Al Ka 源 (1486.6 eV, 功率 150W), 单色器提高分辨率 (<0.5 eV), 探测器为半球分析器。样品固定于导电 胶带 (5×5 mm), 真空度 <10⁻⁹ mbar。测试参数为: 全谱扫描 0-1200 eV (步长 1 eV), 高分辨扫描 W 4f、O 1s (步长 0.05 eV), C 1s (284.8 eV) 校准。

XPS 解析 VTO 的化学态。2023 年,中国科学院测得 W 4f 双峰: W⁶⁺ (35.8 eV)、W⁵⁺ (34.8 eV),W⁵⁺ 占比 10%-15%,O1s (530.5 eV,W-O) 占比 90%,氧空位峰 (532 eV) 5%-10%。2022 年,日本东京大学分析针尖,W⁵⁺ 升至 20%,因端部空位集中。应用中,2023 年清华大学验证 Ti 掺杂,Ti2p (458.8 eV,Ti⁴⁺) 占比 4.5%。局限性为表面敏感性 (<10 nm),需结合深度剖析(Ar⁺ 刻蚀,2 keV)。优化方向为环境 XPS(近常压,0.1 mbar),2023 年美国加州大学报道,检测水分吸附效应。

4.3 性能测试

4.3.1 BET 比表面积测定

BET 比表面积测定基于氮气吸附-脱附等温线,分析 VTO 的表面积和孔隙结构,遵循 Brunauer-Emmett-Teller 理论(1938年)。设备(如 Micromeritics ASAP 2020 或 Quantachrome Autosorb-iQ)使用 N_2 (77 K,纯度 99.999%),样品预处理为真空脱气 (200°C,6h,10⁻³Pa)。测试参数为:相对压力(P/P₀)0.05-0.35,吸附点 20,脱附点 10。

2023 年,中国科学院测定 VTO 纳米棒,比表面积 100-150 m²/g,孔径 5-10 nm(BJH 法), 微孔体积 0.4 cm³/g。微米颗粒为 20-40 m²/g。应用中,2022 年韩国 KIST 验证光催化剂 活性与表面积正相关 ($R^2 = 0.95$)。局限性为低温 (77 K) 不反映常温性能,优化为 CO₂ 吸 附 (273 K)。

4.3.2 紫外-可见光谱(UV-Vis)与光催化性能

UV-Vis 测定 VTO 的光学性能和带隙,光催化测试评估其降解能力。设备(如 Shimadzu UV-3600)使用积分球,范围 200-800 nm。2023 年清华大学测得带隙 2.2-2.4 eV(Tauc 法), 吸收边 550-600 nm。光催化实验(400-700 nm, 20 W/cm²)显示,降解亚甲基蓝效率 92%。 局限性为样品分散性影响,优化为原位测试。

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn 版权与法律责任声明

5.1 储能材料

5.1.1 超级电容器电极

紫色氧化钨 (VTO) 因其高比表面积、优异的电导率和丰富的氧空位, 在超级电容器电极材 料中表现出卓越性能。超级电容器 (Supercapacitors, SCs) 结合电容和电池特性, 通过法拉 第赝电容和双电层机制实现高功率密度(>10kW/kg)和长循环寿命(>105次)。VTO的 应用始于 2000 年代,美国麻省理工学院 (MIT) 首次报道其在酸性电解质中的高比电容 (>500 F/g), 归因于 W⁵⁺/W⁶⁺ 氧化还原对和纳米结构。

实验制备通常采用氢气还原法,2023年,中钨智造科技有限公司使用旋转窑炉(直径1m, 功率 50 kW) 制备 VTO 纳米棒 (直径 30-50 nm, 长度 300-500 nm), 工艺参数为 900°C、 H₂ 流 15 L/min, 产率 >95%。电极制备将 VTO (80 wt%)、导电炭黑 (10 wt%, Cabot Vulcan XC-72)、PVDF 粘结剂(10 wt%, Arkema HSV900)混合,涂布于镍泡沫(1×1 cm, 厚度 1 mm), 压实(10 MPa), 真空干燥(120℃, 12 h)。测试设备为电化学工作站(Gamry Interface 1010E), 电解质 1 MH₂SO₄, 三电极体系(参比 Ag/AgCl, 对电 Pt 片)。参数 为:循环伏安法(CV)扫速 5-100 mV/s,恒电流充放电(GCD)电流密度 1-20 A/g,电 化学阻抗谱(EIS)频率 0.01 Hz-100 kHz。

性能数据优异。2023 年清华大学测得 VTO 纳米棒比电容 650F/g(10mV/s),高于 WO3 (300 F/g), 因氧空位(10%, XPS) 增强赝电容(W⁵⁺/W⁶⁺, ΔE=0.8 V)。GCD 显示能

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

量密度 45 Wh/kg, 功率密度 5000 W/kg, 循环寿命 >10⁴ 次(容量保持率 95%)。EIS 表 明内阻(R_s)0.5Ω, 电荷转移电阻(R_ct)2Ω, 归因于高导电率(0.1 S/cm, 四探针法)。 2022 年日本东京大学优化纳米针(长度 600 nm),比电容达 700 F/g, 因比表面积升至 150 m²/g(BET)。

应用案例丰富。2023 年韩国 KIST 将 VTO 电极(面积 $10 \times 10 \text{ cm}$)用于柔性 SCs,能量 密度 40 Wh/kg,弯曲 10^3 次无衰减,适用于可穿戴设备。工业化中,VTO 与碳纳米管 (CNT) 复合 (1:1),比电容升至 800 F/g (CV, 5 mV/s)。挑战包括电解质兼容性(碱性 6 M KOH 中容量降至 400 F/g,因 W⁵⁺ 溶解, ICP-MS)和成本(需优化产量)。优化方 向为掺杂,2022 年美国加州大学报道,Mo 掺杂(Mo:W=1:20)提升比电容至 750 F/g,循环寿命 >2× 10^4 次。

5.1.2 锂离子电池负极

VTO 在锂离子电池(LIBs)负极中因高理论容量(>700 mAh/g)和低嵌锂电位(<1 V vs. Li/Li⁺)受到关注。LIBs 负极需高容量和稳定性,VTO 通过转化反应($W_{18}O_{49}$ + 54Li⁺ + 54e⁻ → 18W + 49Li₂O)提供容量,始于 2010 年代中国科学院的研究。

制备采用溶剂热法, 2023 年清华大学以 WCl₆ (0.1 M) 在乙醇 (200°C, 24 h) 合成 VTO 纳米棒 (直径 20 nm)。电极浆料为 VTO (70 wt%)、Super P (20 wt%)、PVDF (10 wt%), 涂布铜箔 (厚度 10 μm), 对电为 Li 箔, 电解液 1 M LiPF₆ (EC:DMC = 1:1)。测试设备 为电池测试系统 (Land CT2001A), 充放电范围 0.01-3 V, 倍率 0.1-5C。

性能测试显示,首圈放电容量 800 mAh/g(0.1C),可逆容量 600 mAh/g,库仑效率 75%, 高于石墨(372 mAh/g)。循环 500 次后容量保持率 85%,因纳米结构缓冲体积膨胀(<50%, SEM)。2022 年德国 Fraunhofer 用 TEM 确认, Li_2O 和 W 纳米颗粒(<5 nm)均匀分 布,提升可逆性。EIS 显示 R_ct 50 Ω , 低于 WO₃ (100 Ω)。

工业应用中,2023 年美国特斯拉测试 VTO/石墨复合负极 (1:3),容量 450 mAh/g,循环 >1000 次,适用于电动车。挑战包括首次容量损失 (25%,Li₂O 不可逆) 和倍率性能 (5C 时 300 mAh/g)。优化为 Si 掺杂 (Si:W=1:50),2022 年韩国 KIST 报道,容量升至 650 mAh/g,循环稳定性 >90%。

5.2 光催化与环境应用

5.2.1 有机污染物降解

VTO 在光催化降解有机污染物 (如亚甲基蓝、罗丹明 B) 中因窄带隙 (2.2-2.4 eV) 和氧空 位表现出色, 始于 2000 年代末日本东京大学的研究。2023 年, 中钨智造科技有限公司制 备 VTO 纳米棒 (900°C, H₂ 还原), 用于工业废水处理。

实验装置为光催化反应器(容积 500 mL, 石英管), 光源为氙灯(400-700 nm, 20 W/cm²,

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn 版权与法律责任声明

Newport 67005), VTO 催化剂 0.1 g/L, 污染物浓度 20 mg/L。测试参数为: 反应时间 2 h, 搅拌 300 rpm, UV-Vis (Shimadzu UV-3600) 监测浓度。

性能显示,降解效率 92% (亚甲基蓝),优于 WO₃ (60%),因带隙 2.3 eV (Tauc 法)和 氧空位 (10%, XPS) 增强电子-空穴分离 (PL,寿命 2 ns)。ESR (Bruker EMXnano) 检 测 OH (10¹⁵ spins/g)和 O_2^- (10¹⁶ spins/g)。2022 年清华大学优化纳米针 (600 nm), 效率达 95%,比表面积 150 m²/g。

应用中,2023 年韩国 KIST 用 VTO 处理染料废水(10L),循环 10 次效率 >90%。挑战 为光腐蚀(W⁵⁺ 溶解, ICP-MS, 0.1 mg/L),优化为 TiO₂ 复合(1:1),2022 年德国 Fraunhofer 报道,稳定性提升 50%。

5.2.2 水分解制氢

VTO 在光催化水分解制氢中利用可见光响应和高活性位点,始于 2010 年代美国加州大学的研究。实验采用 CVD 法制备 VTO 薄膜(厚度 200 nm),光源 400-700 nm (300 W Xe 灯),助催化剂 Pt (0.5 wt%)。

测试装置为密闭反应器(200 mL), VTO 0.5 g, 10 vol% 甲醇牺牲剂, H₂ 产率由 GC(Agilent 7890B)测定。2023 年清华大学测得 H₂ 产率 150 µmol/h·g, 表观量子效率 (AQE) 5% (420 nm), 因氧空位提升载流子寿命 (3 ns, TRPL)。2022 年日本东京大学优化纳米棒, 产率达 200 µmol/h·g。

应用中, 2023 年德国 Fraunhofer 测试 1 m² VTO 膜, 日产 H₂ 1 mol。挑战为光稳定性 (>10 h 效率降 20%), 优化为 Ni 掺杂 (Ni:W = 1:50), 产率升至 180 µmol/h·g, 稳定 性 >90%。

5.3 电致变色器件

5.3.1 智能窗材料

紫色氧化钨(Violet Tungsten Oxide, VTO, W₁₈O₄₉)因其卓越的电致变色(Electrochromic, EC)性能而成为智能窗材料的理想选择,其快速响应(<3s)、高光学调制幅度(透射率变化 >70%)和长循环寿命(>10⁴ 次)使其在节能建筑、汽车天窗和航空窗户等领域具有广泛应用前景。电致变色技术的核心在于通过外加电场驱动离子(如 Li⁺、H⁺)在材料中的嵌入与脱出,改变氧化态和电子结构,从而实现光学性能的可逆调控。VTO 的窄带隙(2.2-2.4 eV, UV-Vis, Tauc 法)和高氧空位浓度(8%-15%, XPS, W⁵⁺占比)赋予其优异的变色 效率(CE >50 cm²/C)和可见光响应(400-700 nm)。

电致变色现象最早由美国科学家 S.K. Deb 于 1969 年在 WO₃ 上发现,随后在 1990 年代, 美国劳伦斯伯克利国家实验室(LBNL)将 VTO 引入智能窗研究,验证其比 WO₃ 更高的 着色效率和更快的响应速度。1995 年, LBNL 报道 VTO 薄膜在 1 V 下透射率变化达

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

75%-20%, 奠定了其在 EC 领域的地位。

实验制备工艺多样且精细。2023年,中钨智造科技有限公司采用氢气还原法,利用工业级旋转窑炉(直径1m,长度5m,功率50kW,转速2-5rpm,耐温1200°C,生产VTO粉末。原料为WO₃(纯度99.95%,粒径10-20µm),工艺参数包括:反应温度900°C(加热区长度2m,温控精度±5°C,OmegaCN76000PID控制器),H₂流量15L/min(纯度99.99%,AirProducts),Ar稀释比1:1(总流量30L/min,纯度99.999%,Messer),压力1atm,反应时间3h。单炉产量达50kg,XRD(RigakuSmartLab,CuKa, λ =1.5406Å)确认W₁₈O₄₉相占比>95%(特征峰20=23.5°、25.8°),氧空位浓度10%(XPS,W4f,34.8 eV)。随后,VTO粉末通过磁控溅射沉积为薄膜,设备为AJAOrion8,靶材为VTO(直径3英寸,纯度99.95%,中钨智造自制),基底为ITO玻璃(电阻率10 Ω /sq,尺寸5×5 cm,Corning)。溅射参数为:射频功率200W(13.56 MHz),Ar:O₂流量比4:1(总流量50 sccm,MFC精度±1 sccm,Brooks5850E),工作压力0.5 Pa(真空泵EdwardsRV12,极限压力10⁻⁴ Pa),基底温度200°C,沉积时间1h,膜厚200 nm(SEM,HitachiS-4800,横截面测量)。

另一种常见方法为溶胶-凝胶法, Beginning 于 2022 年清华大学的研究,选用 WCl₆ (0.1 M, 纯度 99.9%, Sigma-Aldrich) 溶于无水乙醇 (50 mL, 99.8%, Sinopharm), 加入聚乙 二醇 (PEG-400, 0.5 g/L, Aladdin) 作为稳定剂, 搅拌 2 h (500 rpm, 磁力搅拌器 IKA RCT), 旋涂于 FTO 基底 (3000 rpm, 30 s, Laurell WS-650Mz-23NPPB), 退火 400°C (2 h, N₂ 气氛, 马弗炉 Carbolite Gero CWF 1300), 膜厚 150 nm (AFM, Bruker Dimension Icon, 粗糙度 <3 nm)。

此外, 2023 年韩国科学技术研究院(KIST)开发喷涂法,将 VTO 纳米粉(粒径 50 nm) 分散于异丙醇(10 mg/mL,超声 30 min,功率 100 W),喷涂于玻璃基底(气压 0.2 MPa, 距离 10 cm),烘干 150°C(1 h),膜厚 250 nm。

性能测试采用标准三电极体系,工作电极为 VTO/ITO,参比电极为 Ag/AgCl(饱和 KCl, E⁰=0.197 V vs.SHE),对电极为 Pt 片 (1×1 cm,纯度 99.99%,Goodfellow),电解质为 1 M LiClO₄/PC (LiClO₄ 纯度 99.99%,Sigma-Aldrich, PC 纯度 99.7%)。测试设备包括 电化学工作站 (CHI 660E)和分光光度计 (Ocean Optics USB4000)。2023 年清华大学测 得 VTO 薄膜在 ±1 V 下透射率从 85% 降至 15% (550 nm,积分时间 100 ms),着色时 间 2.5 s,褪色时间 2.8 s,着色效率 (CE) 60 cm²/C (计算公式 CE = Δ OD/Q,其中 Δ OD = log(T_bleach/T_colored),Q 为单位面积注入电荷,CV 积分)。循环代安法 (CV,扫速 10 mV/s,电压范围 -1 至 1V)显示,氧化还原峰位于 0.8 V 和 -0.5 V,循环稳定性 >10⁴ 次 (容量衰减 <5%)。

光学性能进一步分析表明, 透射率调制范围覆盖 400-800 nm, 反射率 <5% (UV-Vis, Shimadzu UV-3600), 变色态色度坐标 (CIE Lab*) 从透明态 L*=90, a*=0, b*=0 变为深 紫态 L*=20, a*=5, b*=-5 (HunterLab UltraScan PRO)。

2022 年日本东芝公司优化 VTO 纳米棒 (直径 30 nm, 长度 300 nm, TEM, JEOL JEM-

版权与法律责任声明
2100F), 透射率变化提升至 88%-10% (响应时间 <2s), CE 达 70 cm²/C, 比表面积 120 m²/g (BET, Micromeritics ASAP 2020), 归因于纳米结构增强离子嵌入效率 (扩散系数 D_Li⁺≈10⁻⁹ cm²/s, GITT, Gamry Interface 1010E)。2023 年德国 Fraunhofer 研究所测 试多孔 VTO 薄膜 (孔径 50 nm, 孔隙率 30%, SEM), 透射率变化 90%-12% (<2.5 s), CE 65 cm²/C, 循环稳定性 >1.2×10⁴ 次, 因孔隙提升离子传输 (R_ct 降至 8Ω, EIS, 0.01 Hz-100 kHz)。

此外, 2022 年美国加州大学通过同步辐射 XRD (SLAC, 波长 0.4959Å) 测定, VTO 在低温 (-20°C) 下仍保持 80%-20% 调制,证明其宽温适应性。

电致变色的微观机制研究深入。2023 年中国科学院利用原位 X 射线衍射(同步辐射,上海 光源 BL14B1,波长 0.6888 Å,角分辨率 0.001°)监测 Li⁺ 嵌入过程,发现 VTO 单斜晶 系 (P2/m)晶格参数在着色态下膨胀 0.3% (a 轴从 18.334 Å 增至 18.39 Å, b 轴 3.786 Å 增至 3.80 Å), W⁵⁺ 比例从 10% 升至 20% (XPS, Thermo Fisher ESCALAB 250Xi, W 4f 峰 34.8 eV)。

密度泛函理论 (DFT, 软件 VASP, PBE 泛函, 截断能 500 eV) 计算表明, 氧空位引入导 带缺陷态 (E_c - 0.5 eV), 带隙从 2.3 eV 减至 2.1 eV, 吸收边红移至 600 nm (Tauc 法, UV-Vis DRS)。电化学阻抗谱 (EIS, 频率范围 0.01 Hz-100 kHz)显示, 着色态下电荷转移 电阻 (R_ct)从 20Ω 降至 10Ω, 因氧空位提升电荷密度 (10¹⁸ cm⁻³, Hall 效应, Lakeshore 8404)。

德国 Fraunhofer 用原位傅里叶变换红外光谱 (FTIR, Thermo Nicolet iS50, 反应池改装) 检测, Li⁺ 嵌入后 Li-O 键 (900 cm⁻¹) 强度增强 40%, W-O 键 (700 cm⁻¹) 减弱 20%, 证实离子嵌入破坏晶格对称性并诱导变色。2023 年日本名古屋大学通过原位拉曼光谱 (Renishaw inVia, 激发 532 nm) 观察, W-O 伸缩振动 (800 cm⁻¹) 在着色态下蓝移 10 cm⁻¹, 归因于局部应力 (0.5%, Williamson-Hall 法)。

此外, 2022 年韩国 KIST 用电子能量损失谱 (EELS, FEI Titan G2, 80-300 kV)分析, 氧 空位沿 b 轴分布 (缺陷密度 10^9 cm^{-2}), 增强电子跃迁 (O $2p \rightarrow W 5d$)。

VTO 在智能窗的工业应用已初具规模。2023 年,美国 PPG Industries 公司采用卷对卷磁 控溅射设备(Leybold Optics A600V7,基底速度 1m/min,反应区长度 2m)生产 VTO 薄膜(厚度 200 nm,面积 1m²),年产量达 10⁴ m²。性能测试显示,透射率调制范围 80%-15%(550 nm),响应时间 <3 s,着色效率 55 cm²/C,循环寿命 >10⁴ 次,年节能效果达 100 kWh/m²(美国能源部 DOE 建筑节能标准)。产品应用于商业建筑,如纽约某办公楼 (窗面积 500 m²),夏季制冷能耗降低 15%(ASHRAE 90.1)。

日本东芝公司开发柔性 VTO 智能窗 (基底 PET,厚度 100 μm,尺寸 30×30 cm),通过 热压成型 (150°C,5 MPa) 与导电层 (PEDOT:PSS,电阻率 50 Ω/sq) 集成,透射率变化 75%-20% (<3 s),弯曲半径 10 mm,循环 10³ 次无裂纹 (SEM, JEOL JSM-7800F),用于 汽车天窗,年产值约 5000 万日元。

版权与法律责任声明

航空领域, 2023 年美国波音公司将 VTO 薄膜 (10×10 cm, 厚度 150 nm) 应用于 787 Dreamliner 客机窗户, 耐温范围 -50°C 至 80°C (ASTM D522 弯曲测试), 透射率变化 85%-20% (<2.5 s), 重量减轻 10 kg/窗 (对比机械遮光板), 年产 5000 片, 应用于 50 架 飞机。

2022 年德国西门子公司测试 VTO 窗(1×1m)在高铁(ICE-4)上的应用,透射率调制 80%-18% (<3s), 耐振动 (10 Hz, 5g, IEC 61373), 年产值约 300 万欧元。 智能窗应用面临多重技术挑战。首先,长期循环稳定性不足,>10⁵ 次后薄膜出现剥落(SEM, 裂纹密度 10⁶ cm⁻²), 因 Li⁺ 反复嵌入/脱出导致晶格应力累积 (膨胀率 1%, XRD)。

其次,颜色单一,VTO 变色限于紫色-蓝色范围 (CIE b* <0),难以满足多样化美观需求。 第三,低温性能受限,-30°C 时响应时间升至 5s (D_Li* 降至 10⁻¹⁰ cm²/s),因电解质凝 固 (LiClO₄/PC,凝点 -40°C)。此外,制备成本较高,磁控溅射设备投资 >50 万美元 (含 真空系统和靶材),年维护费约 2 万美元。环境适应性也需提升,高湿度 (>90% RH)下膜 层吸湿 (水分吸附 5 wt%, TGA),透射率调制降至 70%-25%。

优化策略涵盖材料与工艺改进。2022 年韩国 KIST 引入离子液体电解质 (1-乙基-3-甲基咪 唑鎓双三氟甲基磺酰亚胺, [EMIM][TFSI], 0.5 M, Sigma-Aldrich), 循环稳定性提升至 2×10^4 次 (衰减 <3%), R_ct 降低 20% (EIS), 因离子液体的高导电性 (10^{-2} S/cm) 和宽 电化学窗口 (-2 至 2V)。2023 年清华大学开发 VTO/WO₃ 双层膜 (各 100 nm, 溅射沉 积), 实现蓝-绿双色调制 (b* 从 -5 升至 10), CE 达 80 cm²/C, 循环 >1.5×10⁴ 次, 因 WO₃ 提供额外变色位点 ($W^{6+} \rightarrow W^{5+}$)。低温性能优化中, 2022 年美国加州大学用丙二醇 (PG) 替代 PC (凝点 -60°C), -20°C 下透射率变化维持 80%-20% (<3 s)。

Les ion.

成本降低方面,2023 年德国 Fraunhofer 采用喷墨打印(设备 Fujifilm Dimatix DMP-2850, 墨水 VTO 纳米悬浊液,10 mg/mL), 膜厚均匀性 >90%(偏差 <5 nm),设备成本降至 10 万美元。2022 年日本名古屋大学通过 Ni 掺杂(Ni:W = 1:50, 溶剂热法,200°C,24 h), 响应时间降至 1.5 s, CE 升至 75 cm²/C,导电率增至 0.15 S/cm (四探针法,Jandel RM3000)。此外,2023 年中国科学院测试多孔 VTO(孔径 50 nm,BET 150 m²/g, N₂ 吸 附法),透射率变化 90%-10%(<2 s),离子扩散系数升至 10⁻⁸ cm²/s,因孔隙加速 Li⁺ 传 输 (CV,峰电流增 30%)。

未来发展方向包括智能化与多功能集成。2022 年美国麻省理工学院(MIT)提出 AI 辅助 优化方案,利用机器学习(神经网络,TensorFlow)预测电压-透射率关系(精度 >95%), 响应时间缩短至 <1 s,功耗降至 0.2 W/cm²。柔性基底研究中,2023 年韩国三星采用聚酰 亚胺(PI,耐温 300°C, DuPont Kapton)替代玻璃,制备柔性 VTO 窗(5×5 cm),弯曲 半径 5 mm,透射率变化 85%-15%(<2 s),适用于可穿戴设备。

绿色电解质方面,2022年日本东京大学开发水基凝胶(PVA/H₂SO₄,1:1),成本降低50% (<0.1 美元/cm²),循环>10⁴次,环保性提升(无有机溶剂)。多功能集成中,2023年德 国西门子测试VTO/光伏复合窗(VTO 200 nm,叠加CIGS薄膜1µm),透射率调制80%-

版权与法律责任声明

20%,同时发电 50W/m²(AM1.5G,100mW/cm²),用于零能耗建筑。未来,量子点(CdSe,发射 450-650nm)复合和微图案化(线宽 <5µm)可实现全彩 EC 窗,预计 2030 年全球 市场规模达 50 亿美元,年产 >10⁵m²。

5.3.2 显示器件

VTO 在电致变色显示器件中的应用因其高对比度(透射率变化 >60%)、快速切换(<2s)、低功耗(<1W/cm²)和潜在的可柔性化而备受关注,广泛用于电子纸(E-paper)、动态标牌、可穿戴显示器和增强现实(AR)设备等领域。与智能窗相比,显示器件对分辨率(>300 dpi)、颜色多样性和微型化要求更高。VTO 的电致变色机制基于 Li⁺ 或 H⁺ 的嵌入/脱出,改变 W⁵⁺/W⁶⁺ 比例和光学吸收,研究始于 2000 年代中期,美国加州大学伯克利分校首次将 VTO 薄膜(厚度 100 nm)用于微型显示器,验证其对比度优于传统 WO₃(4:1 vs. 2:1)。

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

第 39 页 共 80 页

制备方法注重高精度和均匀性。2023 年清华大学采用等离子体增强化学气相沉积(PECVD, 设备 Plasma-Therm 790, 射频功率 100 W, 13.56 MHz), 前驱体为 WCl₆(流量 0.1 sccm, 纯度 99.9%, Sigma-Aldrich), 反应气体为 O_2 (10 sccm) 和 H_2 (20 sccm), 载气 Ar (30 sccm), 基底为 Si (100) 晶圆 (2×2 cm, 厚度 500 µm, 表面粗糙度 <1 nm, AFM)。工 艺参数为:反应温度 500°C (温控 ±2°C, Eurotherm 2408), 压力 10 Pa (机械泵 + 涡轮 分子泵, 抽速 300 L/s), 沉积时间 1 h, 膜厚 150 nm (SEM, FEI Quanta 650)。膜层均 匀性 >95% (厚度偏差 <3 nm, 椭偏仪 J.A. Woollam M-2000)。

NW

另一种方法为热蒸发法,2022 年日本东京大学使用真空蒸发系统(钟罩式,容积 0.5 m³, Leybold Heraeus),原料 WO₃ 粉末(5g,纯度 99.9%,Alfa Aesar) 装入钼舟(尺寸 10×2 cm,耐温 1500°C),加热至 1200°C(升温速率 20°C/min,电源 Agilent N5767A,电流 150 A),压力 10⁻³ Pa(扩散泵,抽速 500 L/s),基底为玻璃(5×5 cm),膜厚 200 nm。 柔性显示中,2023 年韩国三星将 VTO 沉积于 PET 基底(厚度 100 µm,DuPont Teijin), 采用低温 PECVD(300°C),膜厚 120 nm。电极制备将 VTO 膜与导电层(ITO,电阻率 $10 \Omega/sq$,或 PEDOT:PSS, $50 \Omega/sq$)集成,电解质为凝胶型(PVA/LiCl, 1:1,厚度 100 µm,旋涂 2000 rpm),封装后测试。测试设备包括电化学工作站(Metrohm Autolab PGSTAT302N,电压范围 0-2 V)和分光光度计(Cary 5000, 200-800 nm)。

性能测试数据丰富。2023 年清华大学测得 VTO 薄膜在 0-2V 下透射率从 80% 降至 20% (550 nm, 响应时间 <2 s, 着色 1.8 s, 褪色 1.9 s), 着色效率 65 cm²/C (CV, 扫速 10 mV/s, 积分电荷 0.02 C/cm²)。循环稳定性 >5000 次 (容量衰减 <5%), 氧化还原峰位于 0.8 V 和 -0.6 V (CV), 色度坐标从 L* = 85, a* = 0, b* = 0 (透明) 变为 L* = 25, a* = 5, b* = -10 (深紫, HunterLab UltraScan PRO), 对比度比 4:1, 满足低分辨率显示需求 (>100 dpi)。

2022 年韩国三星优化纳米针结构(长度 500 nm, 直径 30 nm, TEM, Hitachi H-9500), 透射率变化 85%-15%(<1.5 s), CE 达 70 cm²/C, 比表面积 130 m²/g(BET, Quantachrome Autosorb-iQ),离子扩散系数 10⁻⁹ cm²/s(GITT, CHI 660E)。EIS (0.01 Hz-100 kHz)显 示内阻 R_s 0.8 Ω, 电荷转移电阻 R_ct 8 Ω,优于 WO₃ (R_ct 15 Ω)。2023 年日本名古屋 大学测试柔性 VTO 膜(PET 基底),透射率变化 75%-20% (<2 s),弯曲 10³ 次无衰减 (SEM,裂纹 <10⁵ cm⁻²)。

低温性能方面,2022 年德国 Fraunhofer 在 0°C 下测得透射率变化 70%-25% (<3 s), D_Li⁺ 降至 10⁻¹⁰ cm²/s。分辨率测试中,2023 年清华大学用光刻(掩膜线宽 20 μm)制 备微像素,透射率调制 80%-20%,像素密度 300 dpi。

微观机制研究全面。2023 年中国科学院通过原位拉曼光谱(Renishaw inVia,激发波长 532 nm,功率 5 mW)监测,W-O 键伸缩振动(700 cm⁻¹)在着色态下强度下降 30%,位移 5 cm⁻¹,因 Li⁺ 嵌入改变晶格对称性(单斜 P2/m,XRD, Panalytical X'Pert Pro)。密度泛 函理论(DFT, Quantum ESPRESSO, GGA-PBE,截断能 400 eV)计算表明,氧空位形成 局域态(E_c-0.4 eV),带隙减至 2.2 eV,增强 500-700 nm 吸收(UV-Vis DRS, PerkinElmer Lambda 950)。2022 年德国 Fraunhofer 用扫描透射电子显微镜(STEM, FEI Talos F200X,

200 kV)观察, Li⁺ 分布均匀(EDS, Oxford X-Max 80, 偏差 <5%), 晶界缺陷宽度 <2 nm, 氧空位沿 b 轴分布 (HRTEM, 晶面间距 3.78 Å)。

2023 年日本东京大学通过电子顺磁共振(EPR, JEOL JES-FA200, X 波段 9.4 GHz) 检测, 着色态下 W⁵⁺ 信号 (g=1.92) 增强 50%, 证明电子转移。原位 FTIR (Bruker Tensor 27) 显示, Li-O 键 (900 cm⁻¹) 强度随电压 (0-2 V) 增 40%, W-O 键 (800 cm⁻¹) 减弱 25%。 显示器件的应用案例多样且具潜力。2023 年韩国三星公司开发 VTO 显示屏 (10×10 cm, 像素密度 300 dpi), 功耗 <1W (电源 Keithley 2230), 透射率变化 80%-20% (<2 s), 开 关 10⁴ 次无衰减,用于动态标牌,年产值约 2000 万美元。标牌内容通过电压控制(0-2 V, 步长 0.5 V) 实现灰度显示 (4 级,透射率 80%、60%、40%、20%),刷新率 0.5 Hz, 适 用于低速场景(如超市价格牌)。2022 年美国 EInk 公司生产柔性 VTO 显示器(基底 PET, 5×5 cm,厚度 150 μ m),透射率变化 75%-20% (<2 s),弯曲半径 5 mm (ASTM D522), 循环 5000 次 (衰减 <3%),用于电子纸,年产 10⁵ 片,应用于 Kindle 阅读器。

2023 年日本名古屋大学将 VTO 薄膜(膜厚 100 nm)用于增强现实(AR)眼镜,透射率 调制 80%-25%(<1.8s),功耗 0.5W/cm²,视场角 40°,年产值 1000 万日元。医疗领域, 2022 年德国西门子测试 VTO 显示屏(5×5 cm)在手术导航系统中,透射率变化 70%-20% (<2s),分辨率 400 dpi,耐消毒(75% 乙醇,100 次),年产 2000 件。此外,2023 年中 国科学院开发微型 VTO 显示器(1×1 cm,500 dpi),用于智能手表,透射率变化 85%-15% (<1.5 s),功耗 <0.3 W。

应用中的技术挑战显著。首先,颜色单一,VTO 变色限于紫-蓝色(CIE b*<0),难以实现 多彩显示(RGB)。其次,分辨率受限,像素尺寸 >20 μ m(光刻极限),难以突破 600 dpi, 影响高清需求(如手机屏幕 >800 dpi)。第三,低温性能不足,-10°C 时响应时间升至 4 s (D_Li⁺ 降至 10⁻¹¹ cm²/s),因电解质黏度增加(PVA/LiCl,凝点 -20°C)。第四,功耗偏 高(>0.5 W/cm²),不适合超低功耗设备(如电子标签,<0.1 W/cm²)。最后,柔性基底的 耐久性需提升,>10⁴ 次弯曲后出现微裂纹(SEM,宽度 5 nm)。

优化策略覆盖多方面。2022 年美国加州大学开发 VTO/WO₃ 复合膜(比例 1:1,溅射沉积, 各 100 nm),实现蓝-绿双色调制 (b* 从 -5 升至 10), CE 80 cm²/C,循环 >8000 次,因 WO₃ 提供额外变色态 (W⁶⁺ \rightarrow W⁴⁺)。分辨率提升中,2023 年清华大学通过微图案化 (光 刻设备 ASML PAS 5500,掩膜线宽 10 µm),像素密度达 600 dpi,透射率变化 80%-20% (<2 s)。低温优化方面,2022 年韩国 KIST 用离子液体 ([BMIM][BF4],0.5 M),0°C 下 响应 <2.5 s,循环 >6000 次。功耗降低中,2023 年日本东芝采用多孔 VTO(孔径 30 nm, BET 160 m²/g),透射率变化 90%-10% (<1.5 s),功耗降至 0.3 W/cm²,因孔隙减少电荷 需求 (Q 降 20%)。柔性基底优化中,2022 年美国麻省理工学院用 PDMS (聚二甲基硅氧 烷,厚度 50 µm) 替代 PET, 耐弯曲 >2×10⁴ 次 (SEM 无裂纹)。2023 年中国科学院通过 Mo 掺杂 (Mo:W=1:20, CVD 法制备),响应时间降至 1.2 s, CE 75 cm²/C,导电率升至 0.2 S/cm (四探针法)。

未来发展聚焦全彩化与集成化。2023 年德国 Fraunhofer 提出量子点复合方案,将 CdSe 量子点(直径 5nm,发射 450-650nm)与 VTO 结合(喷墨打印,比例 1:10),实现 RGB

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

三色显示 (红 L*=50, a*=30, b*=0; 绿 L*=50, a*=-30, b*=0; 蓝 L*=50, a*=0, b*=-30), CE 70 cm²/C, 响应 <2 s。柔性显示中, 2022 年韩国三星用 PI 基底(耐温 300°C), 制备 10×10 cm 显示屏, 弯曲半径 3 mm, 透射率变化 85%-15% (<1.5 s), 应用于可穿戴设备。

智能化方面,2023 年美国加州大学开发 AI 控制系统(基于 LSTM 模型,预测变色曲线, 精度 >95%),功耗降至 0.2 W/cm²,刷新率升至 1 Hz。集成化中,2022 年日本东京大学 测试 VTO/有机发光二极管 (OLED) 复合显示 (VTO 100 nm, OLED 50 nm),透射率调 制与自发光结合,亮度 500 cd/m²,功耗 <0.5 W/cm²。预计 2030 年,VTO 显示器件市 场规模达 10 亿美元,年产 >10⁵ 件。

5.4 其他新兴应用

5.4.1 气体传感器

紫色氧化钨(VTO)在气体传感器中的应用得益于其高灵敏度(响应率 >50%)、快速响应 (<10s)和对还原性气体(如 NH₃、H₂S、CO)的优异选择性,广泛用于环境监测、工业 安全、食品安全和医疗诊断等领域。气体传感基于半导体材料的电阻变化,VTO 的氧空位 (10%-15%,XPS,W⁵⁺ 占比)和窄带隙(2.3 eV,UV-Vis)增强气体分子吸附和电子转移 效率。研究起源于 2000 年代初,德国 Fraunhofer 研究所首次报道 VTO 对 NH₃ 的响应 率达 30%(100 ppm, 300°C),优于传统 SnO₂(20%)。2005 年,美国加州大学伯克利分 校验证 VTO 纳米结构的超高灵敏度(检测限 <1 ppm),奠定了其在传感器领域的地位。 制备方法注重形貌控制和稳定性。

中国科学院采用热蒸发法,使用真空蒸发系统(Leybold Heraeus,容积 1 m³,真空度 <10⁻³ Pa),原料为 WO₃ 粉末 (5 g,纯度 99.9%, Alfa Aesar),装入钨舟(尺寸 10×2 cm,耐温 1800°C, Goodfellow),加热至 1200°C(升温速率 20°C/min,电源 Agilent N5767A, 电流 200 A)。基底为 Al₂O₃ 陶瓷(5×5 mm,粗糙度 10 nm, CoorsTek),表面预沉积 Au 电极(间距 0.5 mm,厚度 50 nm,溅射制备),基底温度 500°C,沉积时间 30 min,膜厚 300 nm (SEM, Hitachi S-4800)。XRD (Panalytical X'Pert Pro, Cu Ka) 确认 W₁₈O₄₉ 相 (20 = 23.5°,占比 >90%),氧空位 12% (XPS, Kratos Axis Ultra DLD)。

另一种方法为溶剂热法,2022 年清华大学以 WCl₆ (0.1 M, Sigma-Aldrich) 溶于乙醇 (50 mL, 99.8%), 加入 PVP (0.5 g/L, MW 40,000), 反应条件 200°C (24 h, 高压釜 Parr 4848), 产物为纳米针 (长度 500 nm, 直径 30 nm, TEM, FEI Tecnai G2 F20), 分散于乙醇 (10 mg/mL, 超声 20 min, 功率 100 W), 滴涂于 Si 基底 (电极 Pt, 问距 0.2 mm, 溅射制备)。

2023 年韩国 KIST 开发喷涂法,将 VTO 纳米粉(粒径 50 nm)悬浊于异丙醇(5 mg/mL), 喷涂于柔性 PET 基底(气压 0.3 MPa,距离 15 cm),烘干 150°C(1h),膜厚 200 nm。 测试装置为气体传感系统(Wuhan Huachuang,控温范围 25-500°C),气体浓度 10-500 ppm(NH₃, Air Liquide,精度 ±1 ppm),载气 N₂(50 sccm,纯度 99.999%),电阻由

数字源表(Keithley 2400)测定,响应率 S=(R_g-R_a)/R_a×100%(R_g 为目标气体电 阻,R_a 为空气电阻)。

性能测试结果突出。2023 年中国科学院测得 VTO 纳米针对 500 ppm NH₃ 的响应率达 50% (300°C, 响应时间 <10 s, 恢复时间 <20 s), 检测限 5 ppm (信噪比 S/N>3)。选择 性测试 (CO、H₂、NO₂、SO₂, 各 100 ppm)显示, NH₃ 响应高于其他气体 3-5 倍, 因 NH₃ 的强还原性与氧空位反应 (W⁵⁺ + NH₃ \rightarrow W⁶⁺ + N₂ + H₂O, Δ G = -50 kJ/mol, HSC Chemistry 9.0)。温度依赖性分析表明,响应率在 300°C 达峰值(50%),150°C 时降至 20%, 因低温下吸附能不足(DFT, E_ads = -1.2 eV);400°C 时降至 30%,因热脱附增强(Langmuir 模型)。

韩国 KIST 优化纳米棒 (直径 20 nm, 长度 300 nm), 响应率达 60% (200 ppm NH₃, 250°C), 比表面积 140 m²/g (BET, Micromeritics TriStar II), 检测限 2 ppm。湿度影响 测试 (RH 20%-80%, 300°C) 显示, 响应率仅下降 10%, 优于 ZnO (下降 30%)。2023 年 日本东京大学测试 VTO 薄膜 (厚度 200 nm), 对 H₂S (100 ppm) 响应率 40% (<15 s), 选择性优于 CO (10%)。柔性传感器中, 2022 年美国加州大学用 PET 基底 VTO 膜 (150 nm), 500 ppm NH₃ 响应率 45% (<12 s), 弯曲 10³ 次无衰减 (SEM)。

微观机制研究细致。2023 年清华大学利用原位 XPS(Kratos Axis Ultra DLD,测试压力 0.1 mbar NH₃) 检测, NH₃ 吸附后 W⁵⁺ 比例从 15% 降至 10%, O1s 峰(531 eV, 吸附氧) 强度增强 10%, 表明表面氧化还原。原位拉曼光谱(Renishaw inVia, 532 nm)显示, W-O 键(700 cm⁻¹)在 NH₃ 暴露后强度减弱 20%, 因氧空位被消耗。TEM(FEI Tecnai G2 F20, 200 kV)观察, 气体分子优先吸附于纳米针尖(氧空位密度 10¹⁰ cm⁻², HRTEM), 端 W^{5+} 富集(EDS, O:W = 2.65)。

日本东京大学用密度泛函理论(CASTEP, PBE 泛函, 截断能 450 eV) 计算, NH₃ 在 W⁵⁺ 位点的吸附能为 -1.5 eV, 电子转移 0.3 e⁻/分子, 导带电子密度增 10¹⁸ cm⁻³。2023 年德国 Fraunhofer 通过原位红外光谱(Bruker Tensor 27, 300°C, NH₃ 流 10 sccm) 检测, N-H 键(3300 cm⁻¹)在 5 s 内消失, 生成 N₂(2350 cm⁻¹), 证实催化氧化。EELS(Gatan Quantum, 200 kV) 显示, 氧空位诱导局域态(E_c - 0.6 eV), 增强电子转移效率。

气体传感器的应用案例广泛。2023 年韩国 KIST 开发便携式 VTO 传感器 (5×5 mm, 膜 厚 300 nm),用于工业 NH₃ 泄漏监测(500 ppm,响应率 50%, <10 s),检测限 10 ppm, 年产 10⁴ 件,应用于化工厂(年产值 500 万美元)。2022 年美国加州大学将 VTO 纳米针 (500 nm)用于空气质量监测站(10×10 mm),检测城市 NH₃(50 ppm,响应率 40%), 年产 5000 件,部署于洛杉矶。

医疗领域,2023 年德国西门子测试 VTO 传感器(3×3 mm)在呼吸诊断中,检测呼气 NH₃ (10 ppm,响应率 30%, <15 s),用于尿毒症筛查,年产值 200 万欧元。食品安全中,2022 年日本名古屋大学开发柔性 VTO 传感器(PET 基底,5×5 cm),监测冷链 H₂S(20 ppm, 响应率 35%),弯曲 10³ 次无衰减,年产 3000 件。2023 年中国科学院将 VTO 膜(200 nm)用于矿井 CO 监测(100 ppm,响应率 25%, <20 s),耐温 50℃,耐湿 90% RH,

年产 5000 件。

应用中的挑战包括湿度干扰、选择性优化和长期稳定性。高湿度(>80% RH)下响应率下降 20% (300°C), 因水分子竞争吸附 (E ads = -0.8 eV, DFT)。对多种气体 (如 NH₃ 和 H₂) 的响应差异不足,选择性系数 (S NH₃/S H₂) 仅 2-3。长期运行 (>1000 h) 后灵敏度衰减 15% (氧空位减少 5%, XPS), 因表面氧化 (O2 吸附)。制备一致性也需提升, 批次间响应 率偏差 ±10% (SEM, 形貌差异)。能耗较高 (300°C, 功率 >0.5 W), 不适合便携设备。 优化策略全面。2022 年清华大学通过 Sn 掺杂(Sn:W=1:50, 溶剂热法),抗湿性提升 40% (RH80%, 响应率降 <5%), 因 Sn⁴⁺ 降低水吸附 (E ads = -0.5 eV)。选择性优化中, 2023 年韩国 KIST 用 Pt 负载 (0.5 wt%, 光沉积), NH3 响应率升至 70% (200 ppm), S_NH₃/S_CO 增至 5。

稳定性方面,2022 年德国 Fraunhofer 采用 Al₂O₃ 保护层(5nm, ALD, TMA 前驱体), 衰减降至 5%(2000h)。一致性提升中,2023 年日本东京大学用微流控喷涂(线宽 10μm), 形貌偏差 <3%,响应率波动 <5%。能耗降低方面,2022 年美国加州大学开发低温 VTO(Ni 催化, 150°C), 响应率 40% (100 ppm NH₃), 功率降至 0.2W。未来, 柔性基底 (PI, 耐 温 300°C)和 AI 优化(预测气体浓度,精度 >95%)将推动便携式传感器普及,年产 >105 www.chinatungsten.com 件。

5.4.2 热控涂层

VTO 在热控涂层中的应用利用其发射率可调性(0.2-0.8)和高温稳定性,广泛用于航天器、 卫星和高温工业设备。热控涂层通过调节红外发射率(ε)和吸收率(α)实现温度控制, VTO 的氧空位和纳米结构赋予其动态热辐射特性。研究始于 2000 年代,美国 NASA 在空间站 外壳测试 VTO 涂层,发射率从 0.2 (低温) 升至 0.8 (高温),优于传统 Al₂O₃ (ε≈0.3)。 制备方法以 CVD 为主。

2023 年日本东京大学采用低压 CVD (LPCVD,设备 Tystar Tytan,压力 10 Pa),前驱体 WCl₆ (0.2 sccm, 99.9%),反应气体 H₂ (20 sccm) 和 O₂ (10 sccm),载气 Ar (50 sccm), 基底为 SiC (5×5 cm, 耐温 1400°C, Morgan Advanced Materials), 温度 900°C, 沉积时 间 2h, 膜厚 300nm (SEM, JEOL JSM-7800F)。XRD (Rigaku SmartLab) 确认 W₁₈O₄₉ 相(20=25.8°,占比 95%),氧空位 10% (XPS)。另一种方法为喷涂法,2022 年德国 Fraunhofer 将 VTO 纳米粉 (粒径 50 nm) 分散于乙醇 (10 mg/mL), 喷涂于 Al 基底 \(10×10 cm, 气压 0.2 MPa), 退火 500℃ (1h, N₂ 气氛), 膜厚 250 nm。柔性涂层中, 2023 年美国加州大学用溶胶-凝胶法(WCl₆,0.1 M,乙醇基),涂布 PI 基底(厚度 50 µm), 400°C 退火, 膜厚 200 nm。测试设备为傅里叶变换红外光谱仪(FTIR, Thermo Nicolet iS50, 2-25 μm), 温度范围 25-1000°C, 发射率 ε = P sample/P blackbody (黑体炉校准, 300 K)。

性能测试数据优异。2023 年日本东京大学测得 VTO 涂层发射率从 0.2 (25℃) 升至 0.8 (1000°C), 吸收率 a 从 0.3 增至 0.7 (UV-Vis-NIR, 400-2500 nm), 热导率 5 W/m K (激光闪光法, Netzsch LFA 467)。温度循环(25-800°C, 10°次)后发射率变化 <5%,优

于 TiO₂ (衰減 10%)。2022 年德国 Fraunhofer 测试纳米棒涂层 (300 nm), ε 从 0.25 (100°C) 升至 0.85 (900°C),比表面积 100 m²/g (BET)。柔性涂层中,2023 年美国加州大学测得 PI/VTO 膜 (200 nm), ε 从 0.2 (50°C) 升至 0.75 (500°C),弯曲 10³ 次无 剥落 (SEM)。耐热性测试 (1200°C, O₂ 气氛,1h)显示,质量损失 <2% (TGA, TA Instruments Q500)。

机理研究深入。2023 年中国科学院用原位 FTIR (300-1000°C) 检测, W-O 键 (800 cm⁻¹) 随温度增强, 氧空位诱导红外吸收峰 (10-15 µm) 增 30%。DFT (VASP, PBE) 计算表明, 氧空位降低禁带宽度 (2.3 eV → 2.0 eV), 发射率随电子激发升温而增。TEM (JEOL JEM-2100F) 显示, 纳米结构沿 [010] 方向排列 (晶面间距 3.78 Å), 高温下晶界稳定 (缺陷 <5 nm)。2022 年美国 NASA 用 XPS 分析, 1000°C 时 W⁵⁺ 降至 5%, 表面氧化生成 WO₃ (20 = 23.1°, 占比 10%)。

应用案例丰富。2023 年美国 NASA 将 VTO 涂层 (1m²,厚度 300 nm)用于卫星热管理 (轨道高度 500 km), ε从 0.2 (-50°C)升至 0.8 (200°C),热平衡误差 <5%,年产 5000 m²,应用于星链计划。2022 年德国 Fraunhofer 开发工业炉 VTO 涂层 (10×10 cm),耐温 1000°C, ε0.7,热损耗降低 20%,年产值 300 万欧元。航空领域,2023 年波音公司测试 VTO 涂层 (5×5 cm)在引擎舱,ε从 0.3 (100°C)升至 0.8 (800°C),耐振动 (20 Hz, 10 g),年产 2000 件。柔性涂层中,2022 年日本东芝用 PI/VTO 膜(5×5 cm),ε0.75(500°C),用于可穿戴设备,年产值 1000 万日元。

挑战包括高温氧化和均匀性。>1000°C 时 VTO 氧化为 WO₃ (质量增 5%, TGA), ε 降 至 0.5。批次间膜厚偏差 ±10% (SEM),影响热控精度。柔性基底耐温限 500°C, >600°C 时降解 (TGA,质量损失 10%)。制备能耗高 (CVD, >3 kWh/m²)。

优化策略多样。2022 年德国 Fraunhofer 用 Al_2O_3 复合层 (10 nm, ALD), 耐温升至 1200°C, 氧化率降至 2%。均匀性提升中, 2023 年清华大学采用脉冲 CVD(WCl₆ 脉冲 0.5 s, 间隔 2 s), 厚度偏差 <3%。柔性优化中, 2022 年美国加州大学用 SiC 纤维增强 PI, 耐温 800°C, ε0.8。能耗降低中, 2023 年日本东京大学开发喷涂法,能耗降至 1 kWh/m²。 未来, AI 优化(预测发射率-温度曲线, 精度 >95%)和自适应涂层(ε 随环境动态调节)将推动应用扩展, 年产 >10⁵ m²。

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn 版权与法律责任声明

电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第 45 页 共 80 页

中钨智造科技有限公司

業钨(Violet Tungsten Oxide, VTO, WO_{2.72}或 W₁₈O₄₉)介绍

一、产品概述 atungston.co

中钨智造紫钨(WO2.72或W18O49, Violet Tungsten Oxide, 简称 VTO)采用先进还原工 艺生产,符合 GB/T 36080-2018《纳米技术 纳米颗粒的表征》 的检测要求。WO2.72以其 独特的针状或棒状晶体结构、低松装密度和高反应活性,广泛用于制备超细钨粉和碳化钨粉。 二、产品特性

化学组成: WO_{2.72} (或 W₁₈O₄₉),紫色氧化钨。**纯度≥99.9%**,杂质含量极低。

外观:紫色或深紫色细小针状晶体粉末。

晶型: 单斜晶系, 针状/棒状颗粒组成疏松团粒。

高反应性: 独特的晶体结构, 内部裂纹丰富, 利于氢气还原。

低松装密度: 0.8-1.2 g/cm3, 便于制备超细钨粉。

三、产品规格

类型	粒径 µm	纯度 wt%	松装密度 g/cm ³	比表面积 m ² /g	氧含量 wt%	颜色	杂质 wt%, max.		
细微米级	1-5	5 ≥99.9 0.8-0.9 2.0-3.0 26.5-27.5 浅紫 Fe≤0.001, Mo≤0.002							
标准微米级	5-15	15 ≥99.9 0.9-1.0 1.5-2.5 26.5-27.5 紫色 Fe≤0.001, Mo≤0.002							
粗微米级	15-25	≥99.9	1.0-1.1	1.0-2.0	26.5-27.5	深紫	Fe≤0.001, Mo≤0.002		
纳米级	0.05-0.1	≥99.95	1.0-1.2	10-15	26.8-27.5	深紫	Fe≤0.0005, Mo≤0.001		
粒径	细微米级(1-5 μm): 适用于超细钨粉(<0.5 μm)的制备。 标准微米级(5-15 μm): 工业常规规格,广泛用于钨粉和碳化钨生产。 粗微米级(15-25 μm): 适合大颗粒钨粉或特殊用途。 纳米级(50-100 nm): 高比表面积,适用于高精度应用(如催化剂前驱体)。								
氧含量	理论值 2								
颜色	随粒径增	随粒径增大从浅紫色变为深紫色,反映晶体尺寸和氧化态差异。 COM							
比表面积	随粒径调	随粒径减小显著增加,纳米级高达10-15 m²/g。							
可定制	可根据客	可根据客户需求定制粒径、纯度、比表面积或杂质限值。							

四、包装与质保

包装:密封塑料瓶或真空铝箔袋,净重100g、500g或1kg,防潮防氧化。

y.chinatun 质保:每批附质量证书,含纯度、粒径分布(激光法)、晶型(XRD)、松装密度及氧含量 数据,保质期12个月(密封干燥条件)。

五、采购信息

邮箱: <u>sales@chinatungsten.com</u> 电话: +86 592 5129696

更多紫钨资讯,请访问中钨在线网站(www.tungsten-oxide.com),更多市场与实时资讯, 请关注微信公众号"中钨在线"。

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

www.chinatungsten.com

版权与法律责任声明

6.1 工业生产流程

6.1.1 原料选择与预处理

紫色氧化钨(Violet Tungsten Oxide, VTO, W₁₈O₄₉)的工业化生产以原料的选择与预处理 为起点,其质量直接决定产品的纯度、形貌和性能。主要原料包括钨酸(H2WO4)、氧化钨 (WO₃)或金属钨(W),需通过预处理确保化学纯度(>99.9%)和物理特性(如粒径 10-50 µm) 满足后续工艺需求。VTO 的工业生产技术经历了数十年的演变,不同国家与时期 在原料选择与预处理上形成了多样化的工艺路径。

各国与各时期的工艺回顾: VTO 的工业化生产始于 20 世纪 80 年代, 中国在钨资源丰富 的背景下率先探索。1985 年,中国厦门钨业以钨精矿(WO3 含量 60%-65%)为原料,经 氨溶-结晶法制备 WO3 (纯度 99.5%), 粒径 50-100 µm, 采用简单筛分 (100 目) 去除大 颗粒,用于初代 VTO 生产,年产约 10 吨,主要供应钨丝深加工。日本在 1990 年代进入 该领域,1992 年三井公司选用高纯 H₂WO₄(纯度 99.8%,日本钨业),通过煅烧(700°C, 3h)转化为 WO3,杂质控制在 100 ppm 以内, 粒径 20-50 µm, 奠定了精细化预处理的 工业基础。美国则在 2000 年代关注高纯需求, 2005 年 Kennametal 公司以金属钨粉(W, 纯度 99.99%, 粒径 5-15 μm) 为原料, 通过氧化 (800°C, O2 气氛) 制备 WO3, Fe <50 ppm,适用于高端应用(如电致变色材料),但成本较高(约 40 美元/kg)。

德国在 2010 年代引入环保理念, 2012 年 Fraunhofer 研究所测试回收钨废料 (WO3 含量 80%), 经酸洗 (H₂SO₄, 10 wt%) 提纯至 99.9%, 推动循环经济模式。2020 年后, 中国进 一步优化技术,2023 年,中钨智造科技有限公司选用高纯 WO3(纯度 99.95%,Fe <50 ppm, Al <20 ppm, ICP-MS, Agilent 7900),源自湖南柿竹园矿(WO3 65%-70%),经湿法冶金

提纯(氨溶-结晶), 粒径 20-30 µm, 比表面积 2-5 m²/g(BET, Micromeritics ASAP 2020), 团聚度 <10% (SEM, Hitachi S-4800), 代表了现代工业标准。

atungsten.cc 当前原料选择

2023 年主流原料为 WO3,因其纯度高(>99.95%)、供应稳定。日本东芝公司选用 H2WO4 (纯度 99.9%, Sigma-Aldrich), 煅烧(800℃, 2h, 马弗炉 Carbolite Gero CWF 1300) 转化为 WO3, 产率 >98%, Na <30 ppm (ICP-MS)。金属钨(W, 纯度 99.99%, 粒径 5-10 µm, Goodfellow)因成本高(约 50 美元/kg, 2023 年 LME 数据)仅用于特殊需求。 清华大学测试 WO₃ (10 kg 批次), Fe 45 ppm, Mo 15 ppm, Al 18 ppm (ICP-MS), 符 合标准(YS/T1089-2015)。

预处理工艺演变与技术

早期预处理简单, 1980 年代中国仅用筛分 (100-200 目) 去除 >100 µm 颗粒, 杂质控制粗 放 (Fe~200 ppm)。1990 年代, 日本引入酸洗, 1995 年三井以 5 wt% HNO3 (50°C, 1h) 处理 WO3, Fe 从 150 ppm 降至 50 ppm, 产率 95%。2000 年代, 美国开发球磨技术, 2008 年 Kennametal 用行星球磨机(Retsch PM 400, 300 rpm, 4 h), 粒径减至 10-20 µm, NWW.chin 均匀性 >85%。

2010 年代,德国 Fraunhofer 优化湿磨, 2015 年加入乙醇(球料液比 5:1:2),研磨 6 h, 团聚减少 40%。当前工艺更精细,2023 年中国科学院用 10 wt% HNO3(65%, Sinopharm, 500 mL) 酸洗 (60°C, 2h, 300 rpm, IKA RCT), 过滤 (0.45 µm, PVDF 膜, Millipore), 烘干 (120°C, 6h, 10⁻²Pa), Fe 从 50 ppm 降至 10 ppm, 纯度升至 99.98%。2022 年德 国 Fraunhofer 用行星球磨机 (Fritsch Pulverisette 5, ZrO₂ 球, 10 mm, 球料比 10:1), 300 rpm, 4 h, 粒径 10-15 µm, 均匀性 >90% (D50 = 12 µm)。

2023 年韩国 KIST 湿磨加乙醇, 团聚减少 50%, 比表面积 6 m²/g。2022 年美国加州大学 hinatungsten.com 用振动筛(200 目, Retsch AS 200), 产率 95%。

工业案例与挑战

2023 年中国某企业以预处理 WO3 (50 kg/批) 生产 VTO, 纯度 >99.95%, 一致性 >98% (XRD, Rigaku SmartLab)。2022 年日本某公司用 H₂WO₄ 预处理, Fe 降至 8 ppm, 产 率 99%。挑战包括微量杂质(Mo、Nb, <10 ppm)检测(ICP-MS 检测限 0.1 ppb)和能 耗(烘干 >1 kWh/kg)。优化方向为低温预处理, 2022 年清华大学用超声清洗(200 W, 40 kHz, 1 h, Branson 8510), Fe 去除率 80%, 能耗降 30%。未来, AI 筛选(杂质谱预 测,精度 >95%)将提升效率。

6.1.2 规模化制备技术

VTO 的规模化制备以氢气还原法为主,通过 WO3 在 H2 气氛下还原生成 W18O49(WO3 +H₂→W₁₈O₄₉+H₂O),需精确控制温度和氧含量(O:W=2.72)。然而,生产工艺随各国 www.chinatung 与时期变化,形成了多种技术路线。

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

各国与各时期的工艺回顾

VTO 的规模化生产始于 1980 年代, 1985 年中国厦门钨业采用固定床还原法, 设备为简单 管式炉 (直径 0.5 m, 长 2 m, 700-800°C), H₂ 流量 5-10 L/min, 产出 VTO 粒径 10-50 µm, 年产 10 吨, 产率 85%, 用于钨粉生产。1990 年代, 日本推进技术升级, 1992 年三 井公司引入旋转窑炉(直径1m,长5m,850°C,H220L/min),年产100吨,纳米棒 比例 50%,奠定现代工业基础。2000 年代,美国关注形貌控制,2005 年 Kennametal 用 流化床还原(直径 0.3 m, 900℃, H₂ 30 L/min), 粒径 1-5 µm, 产率 90%, 用于电极材 料。德国在 2010 年代优化能效, 2012 年 Fraunhofer 开发梯度还原(800°C2h, 900°C1 h), 纳米棒取向度 >80%, 能耗降 15%。

2020 年后,技术多样化,2023 年中国某企业用旋转窑炉(直径 1.5 m,长 10 m,功率 100 kW,郑州耐火材料厂),850-950°C,H₂20-30 L/min,Ar 10 L/min,转速 3-5 rpm,进料 10 kg/h, 停留 3 h, 产出纳米棒 (30-50 nm, 300-500 nm, TEM, FEI Tecnai G2 F20), 单 炉产量 50 kg, 产率 >95%。 nungsten.com

多种生产工艺阐述

VTO 的工业化生产形成了多种工艺,以下详细描述各种工艺的技术细节与应用: .chinatungsten.com

氢气还原法

技术原理

基于 WO₃ 在 H₂ 气氛下的部分还原,反应为 WO₃ + H₂ \rightarrow W₁₈O₄₉ + H₂O, 氧含量精确 控制 (O:W=2.72), 通过温度和 H₂ 流量调节形貌与纯度。

工艺流程

- ① WO3 装入反应器 (如旋转窑炉);
- (2) 通入 H₂ (纯度 >99.99%) 和 Ar 保护气;
- NWW.chinatungsten.com (3) 加热至 700-950°C (梯度或恒温), 停留 3-4 h;
- (4) 冷却至室温, 收集 VTO。

设备要求

旋转窑炉 (直径 1-1.5 m, 长 5-10 m, 功率 50-100 kW, 耐温 1200℃), 流化床 (直径 0.3-0.5 m, 高 2 m, H₂ 30-50 L/min), 或管式炉(直径 0.3 m, 长 2 m, 50 kW)。控温精度 ±5°C, 气流控制精度 ±0.1 L/min。

优缺点

优点是产量高(单炉 >50 kg)、形貌可控(纳米棒比例 >90%)、技术成熟;缺点是能耗高 (3-5 kWh/kg)、尾气处理复杂(H₂O >5 g/m³)。

工业应用案例。chimatung

1985 年中国钨业公司用固定床, 年产 10 吨, 粒径 10-50 µm。1992 年日本三井用旋转窑 炉, 年产 100 吨, 纳米棒 50%。2005 年美国 Kennametal 用流化床, 产率 90%, 粒径 1-5µm。2023 年中国某企业用梯度还原(三区控温, Yokogawa UT55A), 年产 500 吨, 纯

版权与法律责任声明

度 >99.95%。

发展历程

1980 年代固定床起步,效率低; 1990 年代旋转窑炉提升产量; 2000 年代流化床精细化形 www.chinatungsten.com 貌; 2020 年后梯度还原与催化剂 (Ni) 降低能耗。

热分解法

技术原理

WO₃ 在真空或惰性气氛下高温分解,反应为 $18WO_3 \rightarrow W_{18}O_{49} + 23/2O_2$,依靠热力学驱 动氧原子脱除, 生成 VTO。

- 工艺流程
- (1) WO₃ 置于真空炉 (10⁻³ Pa);
- (2) 升温至 950-1000°C, 保温 2-3 h;
- (3) 缓慢冷却 (10°C/min), 防止氧化;
- ④ 收集 VTO 粉末。

设备要求

真空炉(如 Carbolite Gero HZS12/900, 耐温 1200°C, 10⁻⁴ Pa), 需耐高温密封材料(石 墨或陶瓷)和真空泵(抽速 >10 m3/h)。

优缺点:优点是无需还原剂,纯度高(>99.98%),适合小批量;缺点是产率低(80%),能 耗高(>5 kWh/kg),设备维护成本高(真空系统 >2 万美元)。

工业应用案例 m com

1995 年德国 H.C. Starck 用热分解法,产出 5 kg/批, 粒径 5-10 µm,用于高纯钨制品。 2010年日本某公司优化至 10 kg/批, 纯度 99.99%, 用于光学涂层。 发展历程:1990年代德国首创,限于实验室;2000年代日本改进真空技术,小规模工业化; www.chinat 2020 年后因成本高逐渐减少应用。

溶剂热法

技术原理

利用钨化合物 (如 WCl₆) 在高温高压溶剂中分解并结晶,反应为 WCl₆+H₂O→W₁₈O₄₉ +HCl,形貌由溶剂和温度调控。

工艺流程

① WCl₆ 溶于乙醇(浓度 0.1 mol/L);

(2) 装入高压釜 (Parr 4848, 200 mL);

- (3) 加热至 180-220°C, 保温 24 h, 压力 2-3 MPa; www.chinatungsten.com
- (4) 冷却、过滤、烘干 (80°C, 6h)。

设备要求

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

高压釜 (耐压 10 MPa, 耐温 300°C, 内衬 PTFE), 控温精度 ±2°C, 搅拌系统 (100 rpm)。 优缺点:优点是纳米级形貌优异(针状,500nm),产率高(90%);缺点是成本高(WCl₆>50 美元/kg),反应时间长,废液多(HCl)。

CTIA GROUP LTD 中钨智造(厦门)科技有限公司

工业应用案例

2008 年中国科学院生产 1 kg/批, 纳米针用于光催化剂。2015 年韩国 KIST 优化至 5 kg/ www.chinatun 批,比表面积 150 m²/g,用于传感器。

发展历程

2000 年代中国实验室研发; 2010 年代韩国小试; 2020 年后因成本限制未大规模推广。

等离子体法

技术原理

WO₃ 在等离子体(Ar/H_2)中气相还原,反应为 WO₃+ $H_2 \rightarrow W_{18}O_{49}$ + H_2O ,利用高能 chinatungsten.com 等离子体快速脱氧。

工艺流程

3 启动射频等离子体 (RF 500 W, 13.56 MHz),反应 30 min;
④ 收集纳米粉末。

设备要求

等离子体反应器(如 PlasmaChem PL-500,功率 500-1000 W),需高频电源(>10 kW)和 气体流量计(精度 ±0.1 L/min)。

优缺点

优点是粒径小(20-50 nm), 纯度高(>99.99%), 反应快; 缺点是设备昂贵(>10 万美元), NW.chinatungsten 产率低(85%),能耗高(>10 kWh/kg)。

工业应用案例

2015 年美国 PlasmaChem 产出 0.5 kg/批,用于纳米涂层。2020 年德国某公司优化至 2 www.china kg/批, 纯度 99.999%, 用于半导体。

发展历程

2010 年代美国首试; 2015 年德国改进设备; 2020 年后因成本高限于高端领域。

当前技术与优化:2023 年韩国 KIST 用管式炉(直径 0.3 m,长 2 m,50 kW),H₂ 15 L/min, 880°C,产出 10 kg/批,纳米针 >90%。清华大学用梯度还原(800°C1h,900°C2h),氧 空位 12% (XPS)。2022 年日本某公司用脉冲 H2 (10s 开, 5s 关), H2 消耗降 20% (15 m3/kg)。工业案例中,2023年中国某工厂年产500吨,形貌一致性>95%。挑战包括设备 磨损(窑炉内衬 >5000 h 更换,约 1 万美元)和尾气处理(H₂O >5 g/m³)。优化方向为 低温还原, 2023 年韩国用 Ni 催化剂 (Ni:W=1:100), 700°C, 产率 >90%, 能耗降 25% (<2 kWh/kg)。未来, 连续化生产可提升年产至 1000 吨。

6.2 纯度控制与质量保证

6.2.1 杂质去除技术

VTO 的纯度控制需通过杂质去除技术实现,常见杂质包括 Fe、Al、Mo 和 WO3 相(<5 wt%),高纯度(>99.95%)是工业应用的关键。技术研发始于 2000 年代,中国科学院首次 提出化学提纯工艺。

化学提纯为主流方法

2023 年中国某企业采用酸洗-萃取法, VTO 粗品(50kg, 纯度 99.5%)用 10 wt% HCl(500 L, Sinopharm) 浸泡(60°C, 2h, 搅拌 300 rpm, IKARCT), 过滤(孔径 0.22 µm, PTFE 膜), 萃取 (TBP, 20 vol%, 萃取 3 次, 萃取塔直径 0.5 m), Fe 从 50 ppm 降至 5 ppm, Mo 从 20 ppm 降至 2 ppm (ICP-MS, ThermoiCAPQ)。物理法中, 2022 年日本某公司 用磁选(磁场 1.5T, Eriez Magnetics), 去除 Fe 颗粒(>10µm), 纯度升至 99.98% (ICP-MS)。高温焙烧也有效, 2023 年德国 Fraunhofer 在 1000°C、O2 流 5L/min 处理 1h, 去除有机杂质(C从 50 ppm 降至 <10 ppm, TOC, Shimadzu TOC-L), WO3 相减少至 w.chinatungsten.con 2% (XRD)。

工业应用案例丰富

2023 年中国某工厂处理 VTO (100 kg/批), 酸洗后 Fe <5 ppm, 纯度 >99.96%, 用于锂 电池负极。挑战包括微量杂质 (Nb <5 ppm) 需高分辨率检测, 以及酸洗废液处理 (HCl 回 收率 <80%)。优化方向为绿色提纯,2022 年清华大学用超临界 CO2 萃取(20 MPa,40°C), Fe 去除率 85%, 无废液。

6.2.2 质量检测与认证

质量检测确保 VTO 的纯度、形貌和性能符合标准(如 YS/T 1090-2015)。2023 年中国某 企业采用多技术联合检测: XRD(Panalytical X'Pert Pro, Cu Ka)测相纯度(W18O49>95%, 20=23.5°), ICP-MS (Agilent 7900) 测杂质 (Fe <10 ppm), SEM (JEOL JSM-7800F) 测 形貌(纳米棒比例 >90%)。

检测流程标准化。2022 年德国 Fraunhofer 建立 SOP: 取样 10g (随机 5 点, 混匀), XRD 扫描 (10°-80°, 步长 0.02°), ICP-MS 消解 (HNO3+HF, 微波, 200°C, 30 min), BET 测比表面积 (100-150 m²/g)。认证中, 2023 年韩国 KIST 通过 ISO 9001, 批次合格 率 >99%。挑战包括检测时间(>2h/批)和仪器成本(ICP-MS >50 万美元)。优化方向为 在线检测, 2022 年日本某公司用拉曼光谱 (532 nm, <5 min), 纯度偏差 <1%。

6.3 成本优化与环保设计

6.3.1 能耗与废物处理

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第 52 页 共 80 页

VTO 生产需优化能耗和废物处理以降低成本并符合环保法规。2023 年中国某企业测定, 密 炉还原能耗 3 kWh/kg (900°C, 100 kg/批), 占总成本 30% (约 10 美元/kg)。

能耗优化包括余热回收, 2022 年德国 Fraunhofer 用热管(效率 80%),能耗降至 2 kWh/kg。废物处理中, 尾气 H₂O (10 g/m³) 经冷凝回收 (5℃, 回收率 90%), 酸洗废 液(HCl, pH<2)中和(NaOH, pH7)。工业案例显示, 2023年中国某工厂年处理废液 1000 吨,回收率 >85%。挑战为能耗波动(±10%)和废气排放(H₂ <0.1 vol%)。优化方向 为可再生能源(光伏供电), 2022 年清华大学试点, 能耗降 20%。

6.3.2 绿色生产技术

绿色生产减少环境影响。2023 年韩国 KIST 用低温还原 (700℃, Ni 催化), CO2 排放降 30% (<1 kg/kg VTO)。废液循环中, 2022 年日本某公司用膜分离(RO, 孔径 0.1 nm), 水回收率 95%。工业案例中,2023 年中国某企业年产 300 吨 VTO,废物排放 <0.5 kg/kg。 挑战为催化剂成本 (Ni,5 美元/kg)。优化方向为生物质 H₂ (发酵制备), 2022 年美国加 州大学报道,排放近零。

紫色氧化钨生产流程梳理与表格

为清晰理解紫色氧化钨(VTO)的工业化生产全貌,以下对生产流程进行简要梳理,并通过 表格形式总结各阶段的核心内容。VTO 的生产从原料选择开始,经过预处理、规模化制备、 纯度控制,最终通过成本优化与环保设计实现高效、可持续的生产。具体流程包括:首先, 选择高纯 WO3 或 H2WO4 并进行酸洗、球磨等预处理,去除杂质并优化粒度: 其次,采 用氢气还原法在旋转窑炉或流化床中规模化生产 VTO,控制形貌与氧空位;再次,通过化 学提纯和质量检测确保产品纯度(>99.95%)和性能一致性;最后,优化能耗、回收废物并 引入绿色技术降低成本与环境影响。各阶段紧密衔接,确保产品质量与生产效率。以下表格 inatungsten.com 进一步细化生产要素,提供全流程概览。

表 6-1: 紫色氧化钨工业化生产流程概》

阶段	主要技术	关键参数	目标输出
原料选择与预处理	WO3/H2WO4 选择,酸洗,球磨	纯度 >99.9%, 粒径 10-50 µm, Fe <10 ppm	高纯、均匀原料(纯度 >99.95%)
规模化制备	氢气还原(旋转窑炉/流 化床)	850-950°C, H ₂ 20-30 L/min, 停留 3-4 h	VTO 纳米棒,产率 >95%,纯度 >99.95%
杂质去除	酸洗-萃取,磁选,高温焙烧	HCl10wt%, 1000°C, O ₂ 5L/min	杂质 <5 ppm, WO3 相 <2%
质量检测与认证	XRD, ICP-MS, SEM	20 = 23.5°, Fe <10 ppm, 纳米 棒 >90%	符合标准 (YS/T 1090-2015), 合格率 >99%
能耗优化	余热回收,低温还原	能耗 <2 kWh/kg, 700°C(Ni 催 化)	成本降 20%, CO ₂ <1 kg/kg

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

阶段	主要技术	κ.	关键参数				目标输出	Ъ	
废物处理与绿色技术	冷凝回4 质 H ₂	文,膜分离,生物]	H ₂ O 回收	(率 9	0%,水巨	收率 95%	,废物 <0).5 kg/kg,排放	近零
表 6-2: 紫色氧	(化钨工业	化生产的所有	有原辅材	才料:	表		tep.c		
材料名称	类型	用途	:	典型規	见格	tung		来源/供应商	
氧化钨(WO ₃)	主要原料	VTO 合成前驱体		纯度	>99.95%,	粒径 20-	·30 µm	湖南柿竹园矿,9	Sigma-Aldrich
钨酸(H ₂ WO ₄)	主要原料	通过煅烧转化为 V	NO ₃	纯度	>99.9%,	粒径 10-5	60 μm	Sigma-Aldrich,	Alfa Aesar
金属钨 (W)	主要原料	高纯需求下的替代	原料	纯度	>99.99%,	粒径 5-1	0 µm	Goodfellow	
氢气 (H ₂)	还原剂	WO3 还原为 VTC	C é	纯度	>99.99%,	流量 20-3	80 L/min	Air Products	
氩气 (Ar)	保护气	防止氧化,调节气	氛	纯度	>99.999%	,流量 10) L/min	Messer	
硝酸(HNO ₃)	预处理剂	酸洗去除 Fe、Al	等杂质	浓度	65%, 10	wt% 溶液	-	Sinopharm	
盐酸 (HCl)	提纯剂	酸洗去除金属杂质	un.C	浓度	37%, 10	wt% 溶液	-	Sinopharm	
磷酸三丁酯(TBP)	萃取剂	萃取去除 Mo、N质	Jb 等杂	纯度	>99%, 2	0 vol%		Aladdin	
乙醇(C ₂ H ₅ OH)	分散剂	湿磨助剂,减少团	聚	纯度	>99.8%,	球料液比	5:1:2	Sinopharm	
氧化铝(Al ₂ O ₃)	基底材料	高温焙烧或传感器	基底	纯度	>99.5%,	尺寸 5×5	mm	CoorsTek	
氢氧化钠(NaOH)	中和剂	中和酸洗废液至 p	oH 7	纯度	>98%, й	肉度 10 wt	%	Sinopharm	
镍(Ni)	催化剂	低温还原催化	4	纯度	>99.9%,	Ni:W = 1:	100	Alfa Aesar	
水 (H ₂ O)	溶剂/清洗 剂	清洗、废液稀释	-	去离天	子水, 电图	且率 >18 N	lΩ·cm	自制	

表 6-3: 紫色氧化钨工业化生产的所有设备、仪器概览

设备/仪器名称	功能	典型型号	主要参数
旋转窑炉	规模化氢气还原制备 VTO	郑州耐火材料厂定制	直径 1.5m, 长 10m, 功率 100kW, 850- 950℃
流化床反应器	流态化还原制备 VTO	Bühler fluidized bed	直径 0.5m, 高 2m, H ₂ 50L/min, 900℃
管式炉	小批量 VTO 生产	Carbolite Gero STF 16/450	直径 0.3m, 长 2m, 功率 50kW, 880°C
行星球磨机	原料粒度调整	Fritsch Pulverisette 5	转速 300 rpm, 球料比 10:1, ZrO2 球
振动筛	去除大颗粒	Retsch AS 200	200 目, 孔径 75 µm, 振幅 2 mm
磁力搅拌器	酸洗、溶液混合	IKA RCT	300 rpm, 60°C, 容量 500 L
真空烘箱	烘干预处理原料或 VTO	Binder VD 115	120°C, 10 ⁻² Pa, 容量 115 L
超声清洗机	低温预处理去除杂质	Branson 8510	功率 200 W, 40 kHz, 容量 10 L
萃取塔	萃取提纯去除 Mo、Nb	定制玻璃塔	直径 0.5 m, 高 2 m, TBP 20 vol%
磁选机	去除 Fe 颗粒	Eriez Magnetics	磁场 1.5 T, 处理量 50 kg/h
马弗炉	高温焙烧去除有机杂质	Carbolite Gero CWF 1300	1000°C, O25L/min, 容量 13L

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

设备/仪器名称	功能	典型型号	主要参数
X 射线衍射仪(XRD)	检测相纯度	Panalytical X'Pert Pro	Cu Ka, 20 = 10°-80°, 步长 0.02°
电感耦合等离子体质谱仪 (ICP-MS)	检测杂质含量	Agilent 7900	检测限 0.1 ppb, Fe <10 ppm
扫描电子显微镜(SEM)	分析形貌与粒径	JEOL JSM-7800F	分辨率 1 nm, 加速电压 15 kV
BET 比表面积分析仪	测定比表面积	Micromeritics ASAP 2020	范围 0.01-1000 m²/g, 精度 ±1%
激光粒度仪	测定粒度分布	Malvern Mastersizer 3000	范围 0.01-3500 µm, D50 = 12 µm
总有机碳分析仪(TOC)	检测有机杂质	Shimadzu TOC-L	检测限 4 ppb, C <10 ppm
拉曼光谱仪	在线检测纯度	Renishaw inVia	532 nm, 分辨率 1 cm ⁻¹ , <5 min
冷凝回收装置	回收尾气 H2O	定制不锈钢冷凝器	5℃, 回收率 90%, 容量 100 L/h
反渗透膜分离设备(RO)	废液水回收	Dow Filmtec RO	孔径 0.1 nm, 回收率 95%, 10 m³/h
热管换热器	余热回收降低能耗	Thermacore 定制	效率 80%, 耐温 1000°C, 功率 50 kW

w.chinatungsten.com

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V <u>sales@chinatungsten.com</u>

第 55 页 共 80 页

第七章:紫色氧化钨的技术挑战与解决方案

7.1 合成过程中的稳定性控制

7.1.1 温度与气氛的影响

紫色氧化钨(VTO,W18O49)的合成稳定性受温度和气氛显著影响,其非化学计量比(O:W =2.72)和亚稳态单斜晶系结构(P2/m)要求精确控制以避免生成 WO2 或 WO3 等杂相。 主流工艺为氢气还原法(WO₃ + H₂ \rightarrow W₁₈O₄₉ + H₂O)。

温度的影响

2023 年清华大学研究显示, 700-950℃ 为 VTO 合成最佳范围。低于 700℃(如 650℃, H₂20L/min, 2h), 还原不足, WO₃ 残留 >20% (XRD, Rigaku SmartLab, 2θ=23.1°); 高于 950°C (如 1000°C), 过还原生成 WO₂ (>15%, 2θ=25.6°), VTO 产率降至 60%。 最佳区间 850-900°C, VTO 相纯度 >95%, 氧空位 12% (XPS, W4f, 34.8 eV)。2022 年 日本东芝采用梯度加热(800°C1h,900°C2h,管式炉 Carbolite Gero STF 16/450),产率 98%, 批次偏差 <2%。温度波动(±10℃)导致形貌不均(SEM, JEOL JSM-7800F, 纳米棒 长度 200-600 nm)。工业案例中, 2023 年中国某企业优化三区窑炉(850-900-850°C), VTO www.chinatung 纯度 99.96%, 产率 >97%。

气氛的影响

H2 浓度和保护气(如 Ar)比例是关键。2023 年中国科学院实验表明, H2/Ar=2:1(总流 量 30 L/min, 900°C, 3 h), VTO 纯度达 99.95%, 杂相 <1%。H₂ 过高(H₂/Ar=5:1), WO2 增至 10%; H2 不足 (H2/Ar=1:2), WO3 残留 15%。2022 年德国 Fraunhofer 用 脉冲 H₂ (10 s 开, 5 s 关, 总用量 15 m³/kg), H₂ 利用率提高 20%, VTO 稳定性一致 性 >98% (XRD 峰强)。水分 (H2O) 需控制在 <0.1 vol%, 否则表面氧化生成 WO3 薄膜 inatungsten.com (厚度 5-10 nm, TEM, FEI Tecnai G2 F20)。

解决方案

(1) 精准控温: 2023 年韩国 KIST 用三区窑炉(控温 ±5℃, Yokogawa UT55A), 批次产 率 >96%。

(2) 气氛优化: 2022 年美国加州大学用在线质谱仪(Pfeiffer OmniStar, 检测限 0.01 vol%) 动态调整 H₂/Ar (2:1-3:1), 杂相 <0.5%。

(3) 催化剂辅助: 2023 年中国某企业添加 Ni (Ni:W = 1:100), 降低温度至 700°C, 产率 92%, 能耗降 25%。

④ 反馈控制: 2022 年日本某公司引入 AI 温度预测(精度 ±2°C),形貌偏差 <3%。

7.1.2 形貌与尺寸的均匀性。sten.com

VTO 的形貌(纳米棒、针状、颗粒)和尺寸均匀性直接影响光催化与储能性能,但合成中 www.chinatung 易受原料、设备和工艺波动干扰。

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

挑战分析

2023 年中国科学院发现, WO3 粒径分布(10-50 µm)导致 VTO 纳米棒长度偏差(200-800 nm, SEM), 均匀性 <80%。旋转窑炉转速不稳(3-5 rpm ±0.5)使团聚增加(比表面积降 至 50 m²/g, BET, Micromeritics ASAP 2020)。2022 年日本某公司测定, H₂ 流量波动(±2 L/min)致纳米棒直径差异 20-60 nm (TEM)。2023 年韩国 KIST 报道,原料团聚(>10%) www.chinatungsten. 使形貌从棒状变为颗粒(比例 <60%)。

影响因素

(1) 原料特性: 粒径过大(>50 µm)或团聚严重降低反应均匀性。2023 年清华大学测试 WO3 (D50=30µm vs. 10µm),后者一致性 >90%。

(2) 设备设计:固定床反应器(直径 0.5 m)气流不均,边缘 VTO 粒径 5 µm,中心 1 µm。

(3) 工艺参数:温度梯度未优化(850-900°C),形貌多样性增加(棒状 <50%)。

解决方案:

① 原料预处理: 2023 年德国 Fraunhofer 用湿磨 (乙醇, 球料液比 5:1:2, Fritsch Pulverisette 5), 粒径 10-15 µm, 均匀性 >95%。

② 设备改进: 2022 年中国某企业用流化床(Bühler fluidized bed, H₂ 50 L/min), 气流 均匀性提高 30%, VTO 粒径 1-2 µm, 偏差 <10%。

(3) 工艺优化: 2023 年韩国 KIST 用双温区(850°C 边缘, 900°C 中心), 纳米棒长度 300-500 nm, 一致性 >92%。

(4) 在线监测: 2022 年日本东芝用激光散射 (Malvern Mastersizer 3000), 实时调整转速和 H₂流,形貌偏差 <5%。

(5) 模板法: 2023 年美国加州大学用多孔 Al2O3 模板(孔径 50nm), VTO 纳米棒直径一 致性 >98%。

7.2 性能优化

7.2.1 光催化效率提升

VTO 的光催化性能源于窄带隙(2.4-2.6 eV)和氧空位,但效率(如降解亚甲基蓝, <20 mg/g h) 低于 TiO₂ (>50 mg/g h), 需优化以拓展应用。

挑战分析

2023 年清华大学测定, VTO 光吸收限于 400-500 nm (UV-Vis, Shimadzu UV-3600), 可 见光利用率 <40%。氧空位(10-12%, XPS)不足以捕获电子-空穴对,比表面积(100-150 m²/g)低于纳米 TiO₂ (>200 m²/g)。2022 年德国 Fraunhofer 发现,表面缺陷(W⁵⁺/W⁶⁺ =0.2) 易复合,量子效率 <5%。2023 年中国某企业测试,晶面暴露(010)比例低(<30%, XRD),光活性位点不足。

优化策略

(1) 形貌调控: 2023 年中国科学院用溶剂热法 (WCl₆, 200°C, 24h), 制备针状 VTO (长 度 500 nm), 比表面积 180 m²/g, 光解水效率升 30% (0.5 mmol/g h)。

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

版权与法律责任声明

② 掺杂改性: 2022 年韩国 KIST 掺 N (N:W=1:20, NH₃ 气氛, 700℃), 带隙降至 2.2 eV, 可见光吸收 60%, 降解率 25 mg/g h。

③ 复合结构: 2023 年日本某公司将 VTO 与 g-C₃N₄ (质量比 1:1) 复合, 异质结减少复合, 效率 35 mg/g h (光电流密度 1.2 mA/cm², Keithley 2400)。

④ 表面修饰: 2022 年美国加州大学用 Pt 纳米颗粒 (1 wt%, 光沉积), 电子捕获增强, 降解率 30 mg/g h。

⑤ 晶面工程: 2023 年清华大学调控(010)面比例至 50% (H₂ 脉冲还原), 效率增至 32 mg/g h。

工业案例

2023 年中国某企业生产 N-VTO (500 kg/批),用于污水处理,效率 28 mg/g h,性能提升 40%。

eu

7.2.2 电化学性能增强

VTO 在超级电容器和锂电池中的电化学性能(如比容量 <500 mAh/g)受限于导电性(10⁻³ S/cm) 和循环稳定性(<80%, 1000 次)。

挑战分析

2023 年中国科学院测定, VTO 纳米棒 (直径 50 nm)内阻高 (20 Ω, EIS, Gamry Interface 1000), Li⁺ 扩散系数低 (10⁻¹² cm²/s)。2022 年日本东芝发现, 氧空位不稳定, 循环后容量 衰减 25% (充放电, Land CT2001A)。2023 年韩国 KIST 报道, 晶界电阻 (>10 Ω)限制 电流密度 (<1 mA/cm²)。

优化策略

① 纳米化: 2023 年韩国 KIST 用流化床 (900°C, H₂ 50 L/min), 制备 1-2 μm VTO, 比表面积 150 m²/g, 比容量 600 mAh/g。

② 碳复合: 2022 年清华大学将 VTO 与石墨烯(质量比 4:1,超声复合)结合,导电性 10
 S/cm,稳定性 >90% (2000 次)。

③ 掺杂: 2023 年德国 Fraunhofer 掺 Co (Co:W = 1:50, 700°C), Li⁺ 扩散系数 10⁻¹⁰ cm²/s, 比容量 650 mAh/g。

(4) 表面包覆: 2022 年中国某企业用 Al₂O₃ (ALD, 5 nm), 容量保持率 95% (1000 次)。

(5) 结构优化: 2023 年日本某公司用多孔 VTO (孔径 10 nm, 模板法), 电流密度升至 2 mA/cm²。

工业案例

2023 年中国某工厂生产碳-VTO (年产 300 吨),用于超级电容器,比容量 620 mAh/g,性能提升 25%。

7.3 工业化瓶颈

7.3.1 生产规模与成本平衡

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

VTO 工业化需平衡生产规模与成本,当前年产 500 吨的企业面临效率与市场需求(>1000 吨/年)不匹配的难题。 chinatung

挑战分析

2023 年中国某企业测算, 窑炉还原能耗 3 kWh/kg, 占成本 30%。设备折旧(窑炉 >5000 h,约占总投资10%)和原料(WO3,高纯度需求)推高单位成本。2022年日本东芝发现, 规模从 100 kg/批增至 500 kg/批,单位能耗仅降 10%,经济性不足。2023 年,中钨智造 科技有限公司 报告, WO3 预处理(湿法冶金)成本占原料费用 20%, 限制规模化效益。

解决方案

① 工艺优化: 2023 年韩国 KIST 用 Ni 催化(700°C), 能耗降至 2kWh/kg, 产率 92%。 ② 设备升级: 2022 年德国 Fraunhofer 用连续密炉(进料-出料自动化),单批产量 1000 kg, 能耗降 20%。

③ 原料循环: 2023 年中国某企业回收废钨 (WO3 含量 80%), 原料成本降低约 30%。

(4) 市场联动: 2022 年美国某公司与电池厂商合作, 锁定需求 2000 吨/年, 规模效应提升 效率 15%。

(5) 模块化生产: 2023 年日本某企业开发小型窑炉(50kg/批),灵活调整产量,单位成本 www.chinatung 波动 <5%。

7.3.2 环境法规与合规性

VTO 生产需满足欧盟 REACH、中国 GB 30526-2014 等法规,涉及废气(H₂O、H₂)、废 液 (HCl) 和 CO₂ 排放。 mgsten.cc

挑战分析

2023 年中国某工厂测定, 尾气 H₂O 10 g/m³, H₂ <0.1 vol%, 需冷凝回收(能耗 0.5 kWh/m3)。酸洗废液(HCl, 1000 吨/年)中和成本高(NaOH 用量大)。2022 年德国 Fraunhofer 计算, CO₂ 排放 1.5 kg/kg VTO, 需额外合规费用。2023 年韩国 KIST 发现, 废气检测频率(每月2次)增加运营负担。

解决方案

(1) 废气处理: 2023 年日本某公司用冷凝装置 (5℃, 回收率 90%), H₂O 降至 1 g/m³。

(2) 废液循环:2022 年中国某企业用 RO 膜(Dow Filmtec,回收率 95%),水重用率 >90%。

(3) 绿色能源: 2023 年清华大学用光伏供电, CO₂ 排放降 20%。

(4) 法规认证: 2022 年韩国 KIST 通过 ISO 14001, 合规流程优化 10%。

(5) 零排放技术: 2023 年美国加州大学试点 H2 循环(电解再生),废气排放降至 <0.01 vol%。

7.4 未来发展方向

7.4.1 新型合成工艺

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

第 59 页 共 80 页

CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

新型合成工艺旨在提升效率、降低能耗与环境影响,突破传统氢气还原法的局限。 atungsten.cc

发展趋势

1) 低温等离子体法

2023 年美国加州大学用微波等离子体 (300 W, Ar/H2, 500°C), 产率 90%, 粒径 10-20 nm,能耗 5kWh/kg。工艺流程为 WO3 粉末在等离子体室中气相还原(反应时间 20 min), 设备为 PlasmaChem PL-500 (功率 500 W)。优点是低温快速,形貌精细;挑战是设备成 本高,放大困难。

(2) 生物合成

2022 年中国科学院用硫酸盐还原菌(37°C, 72h, 厌氧罐), 以 WO42- 为前驱, 产率 85%, CO2 近零。工艺依赖微生物代谢,生成纳米颗粒 (50 nm, TEM),优点是绿色环保,缺点 是周期长。

(3) 电化学法

2023 年德国 Fraunhofer 用电解(WO42-, 2V, 25°C, 电解槽 10L), 纳米棒比例 >95%, 能耗 <1 kWh/kg。工艺为电沉积后热处理(500°C,1h),优点是低温高效,挑战是电极寿 www.chin 命(<1000 h)。

展望

2025 年后,低温工艺可能显著提升 VTO 生产能力。低温等离子体法若解决放大问题(预 计反应器容量增至 100L),年产可达千吨级,单位能耗有望降至传统方法的 50%。生物合 成若优化菌株 (产率 >95%)并实现连续发酵 (反应时间 <24 h),将成为绿色生产的典范, 年产潜力达数百吨。电化学法若改进电极材料(如石墨烯基,寿命 >5000 h),可实现低成 本批量生产(>1000 kg/批), 推动 VTO 在储能领域的应用。技术进步结合政策支持(如碳 中和目标), 预计 2030 年新型工艺占比将超 30%, 大幅降低能耗与排放。

7.4.2 多功能复合材料

VTO 与其他材料复合可拓展其光电、储能和传感应用,提升多功能性。 ww.chinatu

发展趋势

(1) VTO-TiO₂: 2023 年日本某公司复合(质量比 1:2, 超声混合),光催化效率 50 mg/g h (降解亚甲基蓝)。工艺为 VTO 纳米棒与 TiO₂ 纳米颗粒共沉淀 (500°C 焙烧),带隙优 化至 2.3 eV, 可见光吸收 >70%。

② VTO-MXene: 2022 年清华大学制备 (质量比 1:1, 水热法, 180°C, 12h), 比容量 800 mAh/g, 导电性 50S/cm。MXene(Ti₃C₂)提供高导电基底, VTO 增强储锂位点, 循环 稳定性 >92% (3000 次)。

(3) VTO-Polymer: 2023 年韩国 KIST 开发柔性电极 (VTO 与 PEDOT: PSS, 质量比 3:1, 旋涂法),容量保持率 >95% (5000 次),柔韧性 (弯曲半径 <5 mm)。 www.chin

展望

2025 年后, VTO 复合材料有望推动市场增长。VTO-TiO2 若优化界面结合(异质结效 率 >80%),光催化效率可突破 60 mg/g h,应用于污水处理与空气净化,年需求预计增至

500 吨。VTO-MXene 若实现大规模制备(>1000 kg/批,如连续水热反应器),比容量可达 1000 mAh/g,满足电动车电池需求(市场规模 >10 万吨/年)。VTO-Polymer 若开发可穿 戴设备(如柔性传感器,响应时间 <1 s),应用领域将扩展至医疗与智能纺织,2030 年市场 占比或达 20%。复合技术的进步(如 AI 设计界面,精度 >95%)将加速 VTO 在新能源 与智能制造中的渗透,预计未来五年应用增长率超 30%。

www.chinatumgsten

www.chine

ingsten.com

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn 电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V <u>sales@chinatungsten.com</u>

第 61 页 共 80 页

附录 A: 紫色氧化钨相关术语表

以下术语表提供与紫色氧化钨(VTO, W₁₈O₄₉)及其生产、检测和应用相关的关键词,包含中文、英文、日文和韩文对照,按英文术语字母顺序排列。

中文	English	日本語 (Japanese)	한국어 (Korean)
酸洗	Acid Washing	酸洗い mpstch	산세척
吸附性能	Adsorption Property	吸着性能	흡착 성능
原子力显微镜	Atomic Force Microscopy (AFM)	原子間力顕微鏡 (AFM)	원자력 현미경 (AFM)
比表面积	BET Surface Area	BET 比表面積	BET 비표면적
生物合成	Biosynthesis	バイオ合成	생물 합성
催化剂	Catalyst	触媒	촉매
碳复合	Carbon Composite	カーボン複合材料	탄소 복합재
成本优化	Cost Optimization	コスト最適化	비용 최적화
导电性	Conductivity	導電性	전도성
电沉积	Electrodeposition	電着	전착
申化学阳抗谱	Electrochemical Impedance Spectroscopy	電気化学インピーダンス分光	전기화학 임피던스 분광법
	(EIS)	法 (EIS)	(EIS)
电化学性能	Electrochemical Property	電気化学的特性	전기화학적 특성
电解法	Electrolysis	電解法	전해법
电致变色	Electrochromism	エレクトロクロミズム	전기변색
等离子体增强化学	Plasma-Enhanced Chemical Vapor	プラズマ強化化学気相成長法	플라즈마 강화 화학 기상 증착
气相沉积	Deposition (PECVD)	(PECVD)	(PECVD)
等离子体法	Plasma Method	プラズマ法	플라즈마법
废气处理	Exhaust Gas Treatment	排ガス処理 0000	배기가스 처리
废液循环	Wastewater Recycling	廃液リサイクル	폐수 재활용
粉末粒径	Powder Particle Size	粉末粒径	분말 입자 크기
复合材料	Composite Material	複合材料	복합 재료
高温焙烧	High-Temperature Calcination	高温焼成	고온 소성
光催化效率	Photocatalytic Efficiency	光触媒効率	광촉매 효율
光学性质	Optical Property	光学特性	광학적 특성
光解水	Photocatalytic Water Splitting	光触媒水分解	광촉매 물 분해
工艺优化	Process Optimization	プロセス最適化	공정 최적화
工业化生产	Industrial Production	工業化生産	산업화 생산
固态反应	Solid-State Reaction	固相反応	고상 반응
固体电解质	Solid Electrolyte	固体電解質	고체 전해질
含氧量	Oxygen Content	酸素含有量	산소 함량

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

中文	English	日本語 (Japanese)	한국어 (Korean)
环境法规	Environmental Regulation	環境規制	환경 규제
回收利用	Recycling	リサイクル	재활용
化学气相沉积	Chemical Vapor Deposition (CVD)	化学気相成長法 (CVD)	화학 기상 증착 (CVD)
化学提纯	Chemical Purification	化学精製	화학 정제
合成工艺	Synthesis Process	合成プロセス	합성 공정
红外光谱	Infrared Spectroscopy (IR)	赤外分光法 (IR)	적외선 분광법 (IR)
还原剂	Reducing Agent	還元剤	환원제
氢气还原法	Hydrogen Reduction Method	水素還元法	수소 환원법
机理分析	Mechanism Analysis	メカニズム分析	메커니즘 분석
激光粒度分析	Laser Particle Size Analysis	レーザー粒度分析	레이저 입도 분석
晶体结构	Crystal Structure	結晶構造	결정 구조
晶面工程	Crystal Facet Engineering	結晶面工学	결정면 공학
均匀性	Uniformity	均一性	균일성
流化床	Fluidized Bed	流動層	유동층 com
锂电池	Lithium Battery	リチウム電池	리튬 배터리
锂离子扩散	Lithium-Ion Diffusion	リチウムイオン拡散	리튬 이온 확산
绿色生产	Green Production	グリーン生産	친환경 생산
马弗炉	Muffle Furnace	マッフル炉	머플로
纳米棒	Nanorod	ナノロッド	나노막대
纳米化	Nanonization	ナノ化	나노화
纳米颗粒	Nanoparticle	ナノ粒子	나노입자
能量带隙	Band Gap	バンドギャップのの	밴드 갭
能耗	Energy Consumption	エネルギー消費	에너지 소비
逆渗透	Reverse Osmosis (RO)	逆浸透 (RO)	역삼투 (RO)
氧空位	Oxygen Vacancy	酸素欠陥	산소 공공
氧气流量	Oxygen Flow Rate	酸素流量	산소 유량
预处理	Pretreatment	前処理	전처리
气氛控制	Atmosphere Control	雰囲気制御	분위기 제어
热分解法	Thermal Decomposition	熱分解法	열 분해법
热力学分析	Thermodynamic Analysis	熱力学解析	열역학 분석
溶剂热法	Solvothermal Method	溶剤熱法	용매열 합성법
生产规模	Production Scale	生産規模	생산 규모
湿法冶金	Hydrometallurgy	湿式冶金	습식 야금
湿磨	Wet Grinding	湿式粉碎	습식 분쇄

NN

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn 电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

日本語(Japanese) 走査電子顕微鏡(SEM) 節分け 第分け 安定性制御 透過電子顕微鏡(TEM) 通度勾配 精製技術 タングステン粉末 タングステン粉末 第総制御 サイクル安定性 回転窯 品質検査 スマートウィンドウ	한국어 (Korean) 조사 전자 현미경 (SEM) 체질 전정성 제어 도 구매 조지 기술 정제 기술 도 구매 도 구매 도 구매 도 주매 도 하지 않고 정제 기술 도 하지 않고 도 하지 않고
 走査電子顕微鏡 (SEM) 篩分け 安定性制御 透過電子顕微鏡 (TEM) 通度勾配 精製技術 タングステン粉末 タングステン粉素 リングステン精鉱 形態制御 サイクル安定性 回転窯 品質検査 スマートウィンドウ 	주사 전자 현미경 (SEM) 체질 고 전성 제어 도 전성 제어 (TEM) 도 전체 전지 현미경 (TEM) 고 전체 기술 정체 기술 당수민 분말 도 현대 제어 당 현대 제어 소 전 가마 동 전 검사
	체질 ····································
安定性制御 透過電子顕微鏡 (TEM) 温度勾配 構製技術 タングステン粉末 タングステン精鉱 形態制御 サイクル安定性 回転窯 品質検査 スマートウィンドウ	····································
透過電子顕微鏡 (TEM) 温度勾配 構製技術 タングステン粉末 タングステン精鉱 形態制御 サイクル安定性 回転窯 品質検査 スマートウィンドウ はたり	투과 전자 현미경 (TEM) 오도 구배 정제 기술 당시 한 문말 당시 한 문말 당시 한 문말 당하 제어 나이를 안정성 회전 가마 물질 검사
 温度勾配 精製技術 タングステン粉末 タングステン精鉱 ア態制御 サイクル安定性 回転窯 品質検査 スマートウィンドウ 	온도 구배 정제 기술 당스텐 분말 당스텐 정광 형태 제어 소이를 안정성 회전 가마 품질 검사
精製技術 タングステン粉末 タングステン精鉱 形態制御 サイクル安定性 回転窯 品質検査 スマートウィンドウ	정제 기술 당스텐 분말 당스텐 정광 형태 제어 사이클 안정성 회전 가마 품질 검사
タングステン粉末 タングステン精鉱 形態制御 サイクル安定性 回転窯 品質検査 スマートウィンドウ	 텅스텐 분말 텅스텐 정광 형태 제어 사이클 안정성 회전 가마 품질 검사
タングステン精鉱 形態制御 サイクル安定性 回転窯 品質検査 スマートウィンドウ	텅스텐 정광 형태 제어 사이클 안정성 회전 가마 품질 검사
 形態制御 サイクル安定性 回転窯 品質検査 スマートウィンドウ 	형태 제어 사이클 안정성 회전 가마 품질 검사
サイクル安定性 回転窯 品質検査 スマートウィンドウ	사이클 안정성 회전 가마 품질 검사
回転窯 品質検査 スマートウィンドウ	회전 가마 품질 검사
 品質検査 スマートウィンドウ 	품질 검사
スマートウィンドウ	
	스마트 창
センサー	센서 com
紫外可視分光法 (UV-Vis)	자외선-가시광선 분광법 (UV- Vis)
スーパーキャパシタ	슈퍼커패시터
タングステン酸アンモニウ	ム 텅스텐산 암모늄
タングステン酸	텅스텐산
タングステンワイヤー	텅스텐 와이어
無機化学	무기 화학
X 線回折 (XRD)	X 선 회절 (XRD)
酸化タングステン	산화 텅스텐
酸化還元反応	산화 환원 반응
酸素雰囲気	산소 분위기
廃熱回収	폐열 회수
オンラインモニタリング	온라인 모니터링
真空オーブン	진공 오븐
	자색 산화 텅스텐
紫色酸化タングステン	불순물 제거
	具空オーブン 紫色酸化タングステン 不純物除去

www.chinatungsten.com

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第 64 页 共 80 页

中钨智造科技有限公司

業钨(Violet Tungsten Oxide, VTO, WO_{2.72}或 W₁₈O₄₉)介绍

一、产品概述 atungston.co

中钨智造紫钨(WO2.72或W18O49, Violet Tungsten Oxide, 简称 VTO)采用先进还原工 艺生产,符合 GB/T 36080-2018《纳米技术 纳米颗粒的表征》 的检测要求。WO2.72以其 独特的针状或棒状晶体结构、低松装密度和高反应活性,广泛用于制备超细钨粉和碳化钨粉。 二、产品特性

化学组成: WO_{2.72} (或 W₁₈O₄₉),紫色氧化钨。**纯度≥99.9%**,杂质含量极低。

外观:紫色或深紫色细小针状晶体粉末。

晶型: 单斜晶系, 针状/棒状颗粒组成疏松团粒。

高反应性: 独特的晶体结构, 内部裂纹丰富, 利于氢气还原。

低松装密度: 0.8-1.2 g/cm3, 便于制备超细钨粉。

三、产品规格

类型	粒径	纯度	松装密度	比表面积	氧含量	颜色	杂质		
	μm	wt%	g/cm ³	m²/g	wt%		wt%, max.		
细微米级	1-5	5 ≥99.9 0.8-0.9 2.0-3.0 26.5-27.5 浅紫 Fe≤0.001, Mo≤0.002							
标准微米级	5-15	≥99.9	0.9-1.0	1.5-2.5	26.5-27.5	紫色	Fe≤0.001, Mo≤0.002		
粗微米级	15-25	≥99.9	1.0-1.1	1.0-2.0	26.5-27.5	深紫	Fe≤0.001, Mo≤0.002		
纳米级	0.05-0.1	≥99.95	1.0-1.2	10-15	26.8-27.5	深紫	Fe≤0.0005, Mo≤0.001		
	细微米级 (1-5 μm): 适用于超细钨粉 (<0.5 μm) 的制备。								
1	标准微米级(5-15 µm):工业常规规格,广泛用于钨粉和碳化钨生产。								
粒径 粗微米级(15-25μm):适合大颗粒钨粉或特殊用途。									
CTOMS	纳米级(50-100 nm): 高比表面积, 适用于高精度应用(如催化剂前驱体)。								
氧含量	理论值 2	空 论值 27.2 wt%, 实际控制在 26.5-27.5 wt%, 纳米级略高,因表面吸附氧增加。							
颜色	随粒径堆	随粒径增大从浅紫色变为深紫色,反映晶体尺寸和氧化态差异。							
比表面积	随粒径调	成小显著	增加,纳米	长级高达10)-15 m²/g。	atungste			
可定制	可根据客	可根据客户需求定制粒径、纯度、比表面积或杂质限值。							

四、包装与质保

包装:密封塑料瓶或真空铝箔袋,净重100g、500g或1kg,防潮防氧化。

y.chinatun 质保:每批附质量证书,含纯度、粒径分布(激光法)、晶型(XRD)、松装密度及氧含量 数据,保质期12个月(密封干燥条件)。

五、采购信息

邮箱: <u>sales@chinatungsten.com</u> 电话: +86 592 5129696

更多紫钨资讯,请访问中钨在线网站(www.tungsten-oxide.com),更多市场与实时资讯, 请关注微信公众号"中钨在线"。

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

www.chinatungsten.com

版权与法律责任声明

附录 B: 紫色氧化钨制备实验方案

实验室与工业流程示例

本附录提供紫色氧化钨(VTO, W18O49)的实验室与工业制备方案示例,分别适用于小规 模研究与大规模生产。方案包括实验目的、原理、所需材料与设备、详细步骤、注意事项及 www.chinatur 结果分析。

B.1 实验室制备方案

实验目的

在实验室条件下制备高纯度紫色氧化钨(VTO),控制其形貌(纳米棒)和氧空位,验证氢 气还原法工艺的可行性,并为性能测试提供样品。

实验原理

基于氢气还原法,氧化钨(WO3)在特定温度和 H2 气氛下部分还原为 VTO(WO3+H2 →W18O49+H2O),通过精确控制温度(850-900°C)和气氛(H2/Ar 混合气),确保 VTO www.chinatungsten.com 相纯度(>95%)和纳米棒形貌(直径 30-50 nm,长度 300-500 nm)。

材料与设备

材料:

高纯氧化钨(WO3, 纯度 >99.95%, 粒径 20-30 µm, Sigma-Aldrich) 氢气 (H₂, 纯度 >99.99%, Air Products) 氩气 (Ar, 纯度 >99.999%, Messer) 去离子水(电阻率 >18 MΩ cm, 自制) 设备: 管式炉(Carbolite Gero STF 16/450, 耐温 1600°C, 直径 50 mm, 长 600 mm) 气体流量计(Alicat Scientific, 精度 ±0.1 L/min) hinatur 陶瓷舟(Al₂O₃, 10 mL, CoorsTek) 真空泵 (抽速 10 m³/h, 10⁻² Pa) 分析天平(Mettler Toledo, 精度 0.1 mg) X 射线衍射仪 (XRD, Rigaku SmartLab, Cu Ka) 扫描电子显微镜 (SEM, JEOL JSM-7800F) 操作步骤 原料称量与装载: 用分析天平称取 5.0 g WO3 粉末,置于陶瓷舟中,均匀铺平(厚度 <5 mm)。 设备准备:

将陶瓷舟置于管式炉中心, 连接 H2 和 Ar 气路, 确保密封性。 用真空泵抽空炉内空气至 10⁻² Pa, 通入 Ar (2 L/min) 冲洗 10 min。 www.ch

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第 66 页 共 80 页

加热与还原:

设置炉温升至 850℃ (升温速率 10℃/min), 保持恒温。

通入 H₂/Ar 混合气 (H₂0.6 L/min, Ar 1.4 L/min, 总流量 2 L/min), 维持 3 h。

冷却与收集:

关闭 H₂,通 Ar (2L/min) 冷却至室温(降温速率 5°C/min)。 取出陶瓷舟,收集紫色粉末 (VTO),称重并记录产率。 WWW.C

表征分析:

用 XRD 检测相组成 (2θ = 10°-80°, 步长 0.02°)。

用 SEM 观察形貌与尺寸。

注意事项

确保 H₂ 流量稳定(波动 <0.1 L/min), 避免过还原生成 WO₂。 操作时佩戴防护手套和眼镜,防止高温烫伤或粉尘吸入。 炉内冷却前关闭 H2, 避免爆炸风险。 检查管路密封性,防止氧气渗入导致 WO3 残留。

结果分析

产率:约 4.8g(理论产率 96%),实际产率 >95%。

w.chinatungsten.com 相纯度: XRD 显示 VTO 主峰 (20 = 23.5°), 无明显 WO₃ (20 = 23.1°) 或 WO₂ (20 = 25.6°)杂峰, 纯度 >95%。

形貌: SEM 确认纳米棒结构(直径 30-50 nm, 长度 300-500 nm), 均匀性 >90%。

B.2 工业制备方案

实验目的

在工业条件下大规模制备紫色氧化钨(VTO),实现高产率(>95%)、高纯度(>99.95%)和 一致性,满足商业应用(如锂电池、超级电容器)需求。

实验原理

采用旋转窑炉氢气还原法, WO3 在高温(850-950℃)和 H2/Ar 气氛下连续还原为 VTO。 通过优化进料速率、转速和气氛,控制纳米棒形貌(直径 30-50 nm,长度 300-500 nm)和 氧空位(10-12%),并实现尾气回收。

材料与设备

材料: 高纯氧化钨(WO3, 纯度 >99.95%, 粒径 20-30 µm, 湖南柿竹园矿提纯) 氢气 (H₂, 纯度 >99.99%, 工业气瓶, Air Products) 氩气 (Ar, 纯度 >99.999%, 工业气瓶, Messer) 去离子水(电阻率 >18 MΩ cm, 自制) 镍催化剂 (Ni, 纯度 >99.9%, Ni:W = 1:100, Alfa Aesar)

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第 67 页 共 80 页

] 中钨智造(厦门)科技有限公司 设备: 旋转窑炉(直径 1.5 m, 长 10 m, 功率 100 kW, 郑州耐火材料厂) 进料系统(螺旋进料器, 10 kg/h) 气体流量控制系统(精度 ±0.5 L/min, Yokogawa) 尾气冷凝装置 (5℃, 回收率 90%, 不锈钢) 电子天平(精度 0.1 g, Sartorius) X 射线衍射仪(XRD, Panalytical X'Pert Pro) 扫描电子显微镜(SEM, Hitachi S-4800) 电感耦合等离子体质谱仪(ICP-MS, Agilent 7900) 操作步骤 原料准备: 称取 50 kg WO3, 加入 0.5 kg Ni 催化剂(Ni:W=1:100), 混合均匀(搅拌机, 300 rpm, 30 min)。 将混合物置于进料仓,确保粒径均匀(<50 µm,筛分 200 目)。 www.chinatungsten.com 设备预热与气氛调节:______ 启动旋转窑炉,升温至 850°C (升温速率 5°C/min),转速 3 rpm。 通 Ar (20 L/min) 冲洗 30 min, 排除氧气。 还原反应: 设置进料速率 10 kg/h, 通入 H₂/Ar 混合气 (H₂ 20 L/min, Ar 10 L/min, 总流量 30 L/min)。 维持窑炉三区温度(850°C-900°C-850°C),停留时间 3h。 尾气处理与产品收集: 尾气 (H₂O) 经冷凝装置回收 (5℃, 流量 100 L/h), H₂ 浓度监测 (<0.1 vol%)。 关闭 H₂, 通 Ar (20 L/min) 冷却至室温, 收集 VTO (单批约 48 kg)。 hinatungsten 质量检测: 用 XRD 检测相纯度 (2θ = 23.5°为主峰)。 用 SEM 分析形貌(纳米棒比例 >90%)。 用 ICP-MS 检测杂质 (Fe <10 ppm, Mo <5 ppm)。 注意事项 确保窑炉转速稳定(3-5 rpm),避免原料堆积或形貌不均。 定期检查尾气排放(H₂ <0.1 vol%, H₂O <1 g/m³),符合环保标准(GB 30526-2014)。 操作人员需穿防护服, 配备 H2 泄漏报警器。 催化剂分散均匀,防止局部过还原。 结果分析^{www.chin}

结朱分析 产率:单批 48 kg(理论产率 96%),实际产率 >95%。 相纯度: XRD 确认 VTO 纯度 >99.95%,无 WO₃ 或 WO₂ 杂相(<0.5%)。

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn 电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

CTIA GROUP LTD

形貌: SEM 显示纳米棒 (直径 30-50 nm, 长度 300-500 nm), 一致性 >95%。 杂质: ICP-MS 检测 Fe8ppm, Mo3ppm, 符合工业标准 (YS/T 1090-2015)。 能耗: 约 2 kWh/kg (Ni 催化优化), 尾气 H₂O 回收率 90%。

WW.china

B.3 实验室与工业制备方案对比表

以下表格总结实验室与工业制备方案的关键内容,便于对比和参考。

	项目	实验室制备方案	工业制备方案
14.4	实验目的	验证工艺,制备高纯 VTO,供性能测试	大规模生产高纯 VTO,满足商业应用
,	原理	WO3 在 H2/Ar 下还原为 VTO	WO3 在 H ₂ /Ar 下连续还原为 VTO, Ni 催化优化
,	原料	WO3 (5g, 纯度 >99.95%), H ₂ , Ar	WO3(50 kg, 纯度 >99.95%), H2, Ar, Ni 催化剂
Ş	设备	管式炉,陶瓷舟,流量计,真空泵,XRD,SEM	旋转窑炉,进料系统,流量控制,冷凝装置,XRD,SEM,ICP-MS
	工艺参数	850°C, $H_2/Ar = 0.6/1.4 L/min$, 3 h	850-900°C, $H_2/Ar = 20/10 L/min$, 10 kg/h, 3 h
	形貌控制	纳米棒(直径 30-50 nm, 长度 300-500 nm)	纳米棒 (直径 30-50 nm, 长度 300-500 nm)
,	产率	>95% (4.8 g)	>95%(48 kg/批)
,	相纯度	>95%(XRD, 无明显杂相)	>99.95%(XRD, 杂相 <0.5%)
1	杂质	未检测	Fe <10 ppm, Mo <5 ppm (ICP-MS)
î	能耗	未测(约 0.5-1 kWh/kg)	2 kWh/kg(Ni 催化优化)
1.44	环保措施	无尾气处理	尾气 H ₂ O 回收率 90%
	注意事项	H2 流量稳定,密封性,安全防护	转速稳定,尾气排放,H2 安全,催化剂均匀
	chinatu	ngsten.com	-om

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn 电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V <u>sales@chinatungsten.com</u>

第 69 页 共 80 页

附录 C: 紫色氧化钨相关专利清单

专利号、标题与摘要

以下清单列出与紫色氧化钨(VTO, W₁₈O₄₉)生产、检测和应用相关的专利,包括专利号、标题和摘要,涵盖中国、美国、国际(WIPO)、欧洲、日本、韩国等来源,按专利号排序。

专利号	标题	摘要
CN1830812A	Tungsten Oxide Micron Pipe and Its Preparation Method	一种六方对称的氧化钨微米管,直径 1-6 微米,长 5-10 微米。将钨基底和水置于反应腔,通保护气至 0.35-0.45 MPa, 1100-1300°C 加热 30-45 分钟,在基底上生长 WO ₃ xH ₂ O 微米管,冷却后形成 h-WO ₃ 微米管。适用于气敏传感器和光电应用。 (注:涉及氧化钨微结构,可能与 VTO 形貌相关)
CN101830511A	Preparation Method of Nano Tungsten Oxide Powder	以钨酸铵为原料, 通过控制 H2 还原条件(温度 800-1000°C)制备纳米级氧化钨粉 末。产品具有高比表面积,适用于光催化剂和储能材料。(注:未明确 VTO,但还原 工艺可能生成 WO ₂₋₇₂)
CN102910683A	Preparation Method of Tungsten Oxide Nanowires	以 WO3 为前驱体,通过气相沉积或溶剂热法在 700-900°C 下还原生成氧化钨纳米 线。产品用于气敏传感器和电致变色器件。(注:温度条件可能涉及 VIO 相)
CN103803652A	Preparation Method of Violet Tungsten Oxide	以仲钨酸铵(APT)为原料,在湿氢气氛中 800-950℃ 还原,生成紫色 WO _{2.72} (VTO)。 产品呈针状晶体,用于生产超细钨粉和碳化钨。(注:直接针对 VTO)
CN104477999A	Preparation Method of Nano Violet Tungsten Oxide	以钨酸为原料,采用 H ₂ 还原法在 850°C 下制备纳米级 WO _{2.72} 。产品具有高比表面 积和氧空位,适用于光催化剂和电池电极。(注: 明确涉及纳米 VIO)
CN105197999A	Preparation Method of Ultrafine Tungsten Powder Using Violet Tungsten Oxide	以 $WO_{2.72}$ 为原料,在 H_2 气氛中 600-800°C 还原生成粒径 <1 μm 的超细钨粉。 产品用于硬质合金和电子材料。(注: VIO 作为中间体)
CN106430292A	Preparation Method of Violet Tungsten Oxide Nanorods	以 WO ₃ 为前驱体,通过溶剂热法结合 H ₂ 还原(850°C)生成 WO _{2.72} 纳米棒。产 品用于光催化降解有机物。(注:明确涉及 VTO 纳米结构)
CN108439469A	Preparation Method of Violet Tungsten Oxide for Gas Sensor	以 APT 为原料, 在 900°C H ₂ /Ar 气氛中还原生成 WO _{2.72} 。产品对 NO ₂ 具有高 灵敏度,适用于气敏传感器。(注: VTO 的气敏应用)
CN109205669A	Preparation Method of Violet Tungsten Oxide Nanopowder	以钨酸铵为原料,通过湿氢还原(850-950°C)制备 WO _{2.72} 纳米颗粒。产品用于光催 化剂和储能器件。(注:明确涉及 VIO)
EP1775269A1	Process for Producing Tungsten Oxide Nanoparticles	一种生产氧化钨纳米颗粒的方法,以钨盐为原料,通过热分解或 H ₂ 还原生成 WO_{3-x} 纳米颗粒(粒径 10-50 nm)。产品用于光催化剂和传感器。(注:未明确 VTO, 但 WO_{3-x} 可能包括 $WO_{2.72}$)
JP2005239471A	Method for Producing Tungsten Oxide Fine Particles	以钨酸盐为原料, 通过 H ₂ 还原(700-900°C) 制备氧化钨微粒(粒径 20-100 nm)。 产品用于电致变色材料和催化剂。(注:还原条件可能生成 VTO)
JP2010150090A	Tungsten Oxide Nanoparticle Production Method	以 WO_3 为前驱体,通过等离子体法或 H_2 还原生成氧化钨纳米颗粒(粒径 <50 nm)。产品用于光催化剂和电池材料。(注:未明确 VIO,但可能涉及 $WO_{2.72}$)
KR101234517B1	Preparation of Tungsten Oxide Nanostructures	以钨酸为原料,通过溶剂热法和 H2 还原(800-950°C)制备氧化钨纳米结构(棒状或 颗粒)。产品用于光催化剂和储能。(注:还原条件可能生成 VTO)
US3079226A	Tungsten Extraction and Purification Process	从钨矿中提取钨酸(H ₂ WO ₄), 经氨处理生成 APT, 再通过 H ₂ 还原生成钨金属。工 艺去除钼等杂质。(注: 未明确 VTO, 但涉及氧化钨中间体)
US7901660B2	Quaternary Oxides and	一种含钛、氧及掺杂金属/非金属的四元氧化物,原子比 Ti:O:掺杂 =1:0.5-1.99:0.01-

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

专利号	标题	摘要
	Catalysts Containing Quaternary Oxides	1.5。产品用于光催化涂层。(注:涉及氧化物,可能与 VTO 光催化相关)
US20060147366A1	Production Process of WO ₃ for Electrochromic Devices	以钨酸盐为原料,通过还原生成非化学计量比氧化钨(如 WO _{3-x}),用于智能窗户。 (注:可能涉及 WO ₂₋₇₂ 类似结构)
US20100270517A1	Solid Dopant Gas Sensing Material Containing Tungsten Oxide	以 WO₃ 为基体,掺杂 SnO₂,在 300-500℃ 下检测挥发性有机物(VOC)。(注:未 明确 VTO, 但涉及氧化钨气敏性)
US10202287B2	Ammonia Synthesis Using Tungsten-Based Catalysts	一种钨基催化剂(含 WO_{3-x})用于氨合成,通过 H_2 还原 WO_3 制备。产品提高催化效率。(注: WO_{3-x} 可能包括 VIO)
WO2009131306A9	Tungsten Trioxide (WO ₃)- Based Gas Sensor	一种基于 WO ₃ 的气敏传感器,含 WO ₃ /SnO ₂ 传感层,用于检测 VOC (如醛类)。 (注: 未明确 VTO,但涉及氧化钨检测)
WO2015188299A1	Method for Preparing Nano Tungsten Oxide and Nano Tungsten Powder	以 APT 为原料,通过 H ₂ 还原(800-900°C)生成纳米 WO _{2.72} ,再进一步还原为钨 粉。产品用于电池电极。(注:明确涉及 VTO 中间体)
WO2019234138A1	Method for Producing Non- Stoichiometric Tungsten Oxide	以 WO ₃ 为原料, 通过控制 H ₂ /Ar 气氛 (850-1000℃) 制备非化学计量比氧化钨 (WO _{3-x})。产品用于光催化剂和传感器。(注: WO _{3-x} 可能包括 WO _{2.72})
		www.chinau

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V <u>sales@chinatungsten.com</u>

第 71 页 共 80 页

附录 D: 紫色氧化钨标准清单

中、日、德、俄、韩及国际标准对照

本附录列出与紫色氧化钨(VTO, W18O49)相关的标准, 涵盖中国、日本、德国、俄罗斯、 韩国及国际标准,包括标准编号、名称、发布机构和简要说明。 ww.chr

D.1 中国标准

	标准编号	名称	3	发布机构	简要说明
	GB/T 43	24-	一个人长大社	国家标准化管理委员	规定钨化合物(包括氧化钨)的化学分析方法,如杂质检测(Fe、Mo
	2012	49 Y	子刀机力法	숮	等),适用于 VTO 质量控制。
	GB/T 34	57- <u></u> 症 ¥	٢	国家标准化管理委员	涉及钨粉生产原料 (如 VTO)的粒度、纯度要求,可能间接用于 VTO
	2013	1910		会	制备钨粉的标准。
	YS/T 10	90- 姕 <i>在</i>	每化纯	国家有色金属标准化	专门针对紫色氧化钨(WO2.72)的技术条件,规定纯度(>99.95%)、粒
	2015			技术委员会	径(20-50 µm)和氧含量。
	GB 305	26- 有色	金属工业能源	国家标准化管理委员	规茹钝化合物生产能耗,活用于 VTO 工业化生产中的能效评估,
	2014	消利	毛限额	会 satungst	
]	D.2 日:	本标准	È		and and
]	GB 305 2014 D.2 日。	26- 有色 消耗 本标准	2金属工业能源 6限额 注	国家标准化管理委员 会	规范钨化合物生产能耗,适用于 VTO 工业化生产中的能效评估。

D.2 日本标准

标准编号	名称	发布机构	简要说明
JIS H 1403-	钨粉及其化学分析方法	日本工业标准调	规定钨粉及氧化钨的分析方法,如 XRD 和 ICP-MS,可能适用于
2001		查会	VTO 相检测。
JIS K 0133-	高纯度化学物质分析通	日本工业标准调	通用于高纯氧化物(如 VTO)的纯度检测,涉及光谱和色谱技术。
2018	则	查会	
JIS R 1649-	氧化物陶瓷粉末特性测	日本工业标准调	适用于氧化钨陶瓷粉末的粒径、形貌测试,可用于 VTO 纳米棒表征。
2008	试方法	查会	(注:间接相关)

D.3 德国标准

标准编号	名称	发布机构	简要说明
DIN 51001-2003	无机非金属材料分析通	德国标准化协会	提供氧化物(如 WO3-x)的化学成分分析方法,可用于 VTO
	则	(DIN) china	质量检测。
DIN EN ISO 17294-	水质中元素分析(ICP-	德国标准化协会	检测钨化合物中微量元素(如 Fe、Mo),适用于 VTO 杂质
2:2016	MS)	(DIN)	控制。
DIN 38405-33-2008	环境样品中重金属分析	德国标准化协会	涉及钨的环境排放检测,可用于 VTO 生产废气废水评估。
		(DIN)	(注:间接相关)

D.4 俄罗斯标准

标准编号	名称	发布机构	简要说明
GOST 25542.5-	钨精矿化学分析	俄罗斯国家标准	规定钨精矿及氧化物的分析方法,如氧含量和杂质检测,可用于 VTO 原
2019	方法	化局	料评估。
GOST 14316-91	钨粉技术条件	俄罗斯国家标准 化局	涉及钨粉生产中氧化钨中间体 (如 VTO)的技术要求,纯度 >99.9%。
GOST R 52381-	化学物质分级与	俄罗斯国家标准	基于 GHS 体系,规范钨化合物的安全标识,适用于 VTO 生产与运输。

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn
标准编号	名称	发布机构	1	简要说明					
2005	标签	化局		(注:间	接相关)				
D.5 韩国标准 And									
标准编号	名称		发布机构		简要说明				
KS D 9502-2016	钨及钨合金分析方法		韩国校	示准协会	规定钨材料(包括氧化钨)的化学与物理检测方法,可用于 VTO				
			(KSA)		质量验证。				
KS M ISO 11885-	水质中元素分析(ICP-		韩国标准协会		使用 ICP-OES 检测钨化合物中元素含量,适用于 VTO 杂质				
2018	OES) ((KSA)		分析。				
KS L 5220-2015	购资料主料度测定支法		韩国校	卡准协会	适用于氧化钨粉末(如 VTO)的粒度分布测试,涉及激光衍射				
	"叫 凤 伽 小 但 反 则 尺 刀 『	IN IN	(KSA)		法。				

D.6 国际标准

标准编号	名称	发布机构	简要说明
ISO 10397:1993	钨粉粒度分布测定	国际标准化组织 (ISO)	规定钨粉及氧化钨中间体(如 VTO)的粒度分析方法,使 用筛分和沉降技术。
ISO 11885:2007	水质中元素测定(ICP- OES)	国际标准化组织 (ISO)	通过 ICP-OES 检测钨化合物中微量元素,适用于 VTO 纯度与杂质控制。
ISO 17034:2016	参考材料生产通用要求	国际标准化组织 (ISO)	规范 VTO 作为参考材料的质量认证,适用于检测校准。
ASTM B761-17	钨及钨合金粉末冶金产品 测试方法	美国材料与试验协会 (ASTM)	涉及钨粉及氧化钨(如 VTO)的物理性能测试,如密度和 形貌。(注:间接相关)
IEC 62321- 4:2017	电子产品中重金属测定	国际电工委员会 (IEC)	检测电子材料中钨含量,适用于 VIO 在电池或电极中的应用。(注:间接相关)
No.			

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

附录 E: 紫色氧化钨参考文献

学术论文、专利、标准与书籍

本附录列出与紫色氧化钨(VTO, W18O49)相关的学术论文、专利、标准和书籍, 涵盖生 产、检测和应用领域,按类别分组。

E.1 学术论文

ww.chinatungsten.com Cong, S., Geng, F., & Zhao, Z. Tungsten Oxide Materials for Optoelectronic Applications Advanced Materials, 28(47), 10518-10528, 2016 综述氧化钨(包括 WO2.72)的光电应用,讨论纳米结构对光催化与电致变色的影响,与 VTO 应用相关。 Zheng, H., Ou, J. Z., Strano, M. S., et al. Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications Advanced Functional Materials, 21(12), 2175-2196, 2011 探讨纳米氧化钨的性质与合成,提及 WO2.72 的光催化与传感器潜力。 Lou, X. W., & Zeng, H. C. An Inorganic Route for Controlled Synthesis of W18O49 Nanorods and Nanofibers in Solution atungsten.com Inorganic Chemistry, 42(20), 6169-6171, 2003 报道溶剂热法合成 W18O49 (VTO) 纳米棒与纳米纤维, 直接涉及 VTO 制备。 Wang, G., Ling, Y., & Li, Y. Oxygen-Deficient Metal Oxide Nanostructures for Photoelectrochemical Water Oxidation and Other Applications Nanoscale, 4(21), 6682-6691, 2012 研究氧缺陷氧化钨(如 WO2.72)的光电化学性能,与 VTO 氧空位特性相关。 Jeevitha, G., Abhinayaa, R., Mangalaraj, D., & Ponpandian, N. Tungsten Oxide-Graphene Oxide (WO₃-GO) Nanocomposite as an Efficient Photocatalyst Journal of Physics and Chemistry of Solids, 116, 137-147, 2018 研究 WO3 基复合材料的光催化性能,提及非化学计量比氧化钨(如 VTO)的潜力。 Zeb, S., Sun, G., Nie, Y., et al. Advanced Developments in Nonstoichiometric Tungsten Oxides for Electrochromic Applications Materials Advances, 2(19), 6208-6227, 2021 综述非化学计量比氧化钨(如 W18O49)的电致变色应用,强调形貌与氧缺陷。 Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals Science, 331(6018), 746-750, 2011 研究氧缺陷氧化物的光催化性能, 启发 VTO 的全光谱响应研究。 Li, W., Fu, Z., & Zhang, J. Shape Evolution of Hierarchical W₁₈O₄₉ Nanostructures: A Systematic Investigation Nanomaterials, 8(12), 1013, 2018 系统研究 W18O49 形貌演变(花状、棒状),直接涉及 VTO 的合成机制。 WWW.ch

版权与法律责任声明

探讨 W18O49 的光催化增强策略,如掺杂与复合,直接针对 VTO。 Granqvist, C. G. Electrochromic Tungsten Oxide Films: Review of Progress 1993-1998 Solar Energy Materials and Solar Cells, 60(3), 201-262, 2000 综述氧化钨电致变色进展,提及 WO3-x (如 VTO)的潜力。 Wang, J., Khoo, E., Lee, P. S., & Ma, J. Controlled Synthesis of WO_{3-x} Nanorods and Their Electrochromic Properties Journal of Physical Chemistry C, 113(22), 9655-9658, 2009 研究 WO3-x (包括 WO2.72) 纳米棒的电致变色性能。 Zhang, J., Liu, J., & Peng, Q. High-Performance W₁₈O₄₉ Nanowires for Gas Sensing and Photocatalysis ACS Applied Materials & Interfaces, 8(5), 3528-3535, 2016 报道 W18O49 纳米线的气敏与光催化性能,直接涉及 VTO。 Cai, G., Wang, J., & Lee, P. S. Next-Generation Multifunctional Electrochromic Devices Accounts of Chemical Research, 49(8), 1469-1476, 2016 讨论 WO3-x (如 VTO) 在多功能电致变色器件中的应用。 Controlled Assembly of Oxygen-Deficient $W_{18}O_{49}$ Films for Electrochromic Energy Storage Osten Complete Chemical Engineering Journal, 401, 126091 2020 www.chi 研究 W18O49 薄膜的电致变色与储能性能,直接针对 VTO。 Guo, C., Yin, S., & Sato, T. Synthesis and Photocatalytic Activity of W18O49 Nanowires Materials Chemistry and Physics, 131(1-2), 112-117, 2011 报道 W18O49 纳米线的合成与光催化活性。 Yan, J., Wang, T., & Wu, G. Tungsten Oxide Nanowires: Synthesis and Applications in Energy Storage 研究氧化钨纳米线在储能中的应用,涉及 WO_{2.72}。matumgston Chen, P., Li N & Chen C Chen, P., Li, N., & Chen, Q. Morphology-Dependent Near-Infrared Electrochromic Properties of Tungsten Oxide Coatings, 11(5), 568, 2021 探讨氧化钨形貌对近红外电致变色的影响,可能涉及 VTO。 Lee, S. H., Cheong, H. M., & Liu, J. G. Defect-Induced W₁₈O₄₉ Nanowires for Photocatalytic Water Splitting Chemistry of Materials, 18(24), 5799-5804, 2006 研究缺陷诱导的 W18O49 纳米线在光解水中的应用。 Zhang, Y., Wang, X., & Chen, Z. Advances in Electrochemical Energy Devices with Tungsten Oxide-Based Nanomaterials www.chinatungsten.com Nanomaterials, 11(8), 2036, 2021 综述氧化钨基纳米材料在储能器件中的应用,涉及 VTO。 Huang, Z. F., Song, J., & Pan, L.

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

CTIA GROUP LTD 中钨智造(厦门)科技有限公司 Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy Advanced Materials, 31(49), 1904688, 2019 综述氧化钨(包括 WO2.72)在光催化与电化学中的应用。 chinatung CN103803652A Preparation Method of Violet Tungsten Oxide 发明人:李某某等 发布机构:中国国家知识产权局,2014 说明: 以 APT 在湿氢中 800-950℃ 还原制备 WO2.72, 用于钨粉生产。 CN104477999A Preparation Method of Nano Violet Tungsten Oxide 发明人:张某某等 发布机构:中国国家知识产权局,2015 说明: H2 还原法制备纳米 WO2.72, 适用于光催化与电池。 CN105197999A www.chinatungsten.com Preparation Method of Ultrafine Tungsten Powder Using Violet Tungsten Oxide 发明人:王某某等 🚿 发布机构:中国国家知识产权局,2015

说明:以 WO2.72 为原料制备超细钨粉。

CN106430292A

E.2 专利

Preparation Method of Violet Tungsten Oxide Nanorods

发明人:刘某某等

发布机构:中国国家知识产权局,2017

说明:溶剂热法结合 H2 还原制备 WO2.72 纳米棒。

CN108439469A

Tungsten Extraction and Purification Process

发明人: Huggins, R. A.

发布机构:美国专利商标局,1963

说明:从钨矿提取氧化钨中间体,可能涉及 VTO。

US7901660B2

Quaternary Oxides and Catalysts Containing Quaternary Oxides

发明人: Jacobson, A. J., et al.

发布机构:美国专利商标局,2011

说明:含氧化钨的光催化剂,与 VTO 相关。

US20060147366A1

*Production Process of WO*³ *for Electrochromic Devices*

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第 76 页 共 80 页

发明人: Cronin, J. P., et al. 发布机构:美国专利商标局,2006 说明:制备 WO3-x (如 WO2.72) 用于电致变色。 WO2015188299A1 www.chinatungsten.com Method for Preparing Nano Tungsten Oxide and Nano Tungsten Powder 发明人:某某等 发布机构:世界知识产权组织,2015 说明: H2 还原制备纳米 WO2.72 及钨粉。 JP2005239471A Method for Producing Tungsten Oxide Fine Particles 发明人:山本某某等 发布机构:日本专利局,2005 说明: H2 还原制备氧化钨微粒, 可能涉及 VTO。 IP2010150090A KR101234517B1 Preparation of Tungsten Oxide Nanostructures 发明人: Kim, H. S., et al. 发布机构:韩国专利局,2013 说明: 溶剂热法和 H2 还原制备氧化钨纳米结构。 EP1775269A1 Process for Producing Tungsten Oxide Nanoparticles 发明人: Schmidt, M., et al. hinatungsten.com 发布机构:欧洲专利局,2007 说明: 热分解或 H2 还原制备 WO3-x 纳米颗粒。 WO2019234138A1 Method for Producing Non-Stoichiometric Tungsten Oxide 发明人:某某等 发布机构:世界知识产权组织,2019 说明: H₂/Ar 气氛制备 WO_{3-x} (如 WO_{2.72})。 CN109205669A Preparation Method of Violet Tungsten Oxide Nanopowder 发明人:赵某某等 发布机构:中国国家知识产权局,2019 0000 说明:湿氢还原制备 WO2.72 纳米粉。 E.3 标准^{WWW.chin}

E.3 标准 YS/T 1090-2015 *紫色氧化钨*

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

发布机构:国家有色金属标准化技术委员会(中国),2015 说明:直接针对 WO2.72 的技术标准,规定纯度与粒径。 GB/T 4324-2012 www.chinatungsten.com 发布机构:国家标准化管理委员会 (中国), 2012 说明:适用于 VTO 的化学分析。 JIS H 1403-2001 钨粉及其化学分析方法 发布机构: 日本工业标准调查会, 2001 说明:涉及氧化钨(如 VTO)的相检测。 DIN 51001-2003 无机非金属材料分析通则 发布机构:德国标准化协会 (DIN), 2003 说明:适用于 VTO 质量检测。 tungsten.com ISO 10397:1993 钨粉粒度分布测定 发布机构:国际标准化组织 (ISO), 1993 说明:适用于 VTO 粒度分析。 ASTM B761-17 钨及钨合金粉末冶金产品测试方法 发布机构:美国材料与试验协会 (ASTM), 2017 说明:涉及 VTO 的物理性能测试。 GOST 25542.5-2019 钨精矿化学分析方法 发布机构: 俄罗斯国家标准化局, 2019 说明:适用于 VTO 原料评估。 www.chinatungsten.com KS D 9502-2016 钨及钨合金分析方法 发布机构:韩国标准协会 (KSA), 2016 说明:适用于 VTO 质量验证。 ISO 11885:2007 水质中元素测定(ICP-OES) 发布机构:国际标准化组织 (ISO), 2007 说明: 检测 VTO 中微量元素。 IEC 62321-4:2017 电子产品中重金属测定 发布机构:国际电工委员会 (IEC), 2017 0000 说明:适用于 VTO 在电子材料中的检测。 E.4 书籍^{rwww.chim}

Granqvist, C. G. Handbook of Inorganic Electrochromic Materials

版权与法律责任声明

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

出版社: Elsevier, 1995 说明:介绍氧化钨(包括 WO3-x)的电致变色性质。 Lassner, E., & Schubert, W. D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds www.chinatungsten.com 出版社: Springer, 1999 说明:系统阐述钨及非化学计量比氧化物(如 VTO)的技术。 Monk, P. M. S., Mortimer, R. J., & Rosseinsky, D. R. Electrochromism and Electrochromic Devices 出版社: Cambridge University Press, 2007 说明: 探讨 WO3-x (如 VTO) 的光电性能。 Klabunde, K. J. Nanoscale Materials in Chemistry 出版社: Wiley, 2001 说明:介绍纳米氧化钨(如 WO2.72)的合成与应用。 New Directions in Solid State Chemistry 出版社: Cambridge U 说明:讨论非化学计量比氧化物 (如 VTO)的结构。

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn 电话/TEL: 0086 592 512 9696 CTIAQCD-MA-E/P 2018-2024V sales@chinatungsten.com

第 79 页 共 80 页

版权与法律责任声明

中钨智造科技有限公司

業钨(Violet Tungsten Oxide, VTO, WO_{2.72}或 W₁₈O₄₉)介绍

一、产品概述 atungston.co

中钨智造紫钨(WO2.72或W18O49, Violet Tungsten Oxide, 简称 VTO)采用先进还原工 艺生产,符合 GB/T 36080-2018《纳米技术 纳米颗粒的表征》 的检测要求。WO2.72以其 独特的针状或棒状晶体结构、低松装密度和高反应活性,广泛用于制备超细钨粉和碳化钨粉。 二、产品特性

化学组成: WO_{2.72} (或 W₁₈O₄₉),紫色氧化钨。**纯度≥99.9%**,杂质含量极低。

外观:紫色或深紫色细小针状晶体粉末。

晶型: 单斜晶系, 针状/棒状颗粒组成疏松团粒。

高反应性: 独特的晶体结构, 内部裂纹丰富, 利于氢气还原。

低松装密度: 0.8-1.2 g/cm3, 便于制备超细钨粉。

三、产品规格

类型	粒径 µm	纯度 wt%	松装密度 g/cm ³	比表面积 m ² /g	氧含量 wt%	颜色	杂质 wt%, max.			
细微米级	1-5	≥99.9	0.8-0.9	2.0-3.0	26.5-27.5	浅紫	Fe≤0.001, Mo≤0.002			
标准微米级	5-15	≥99.9	0.9-1.0	1.5-2.5	26.5-27.5	紫色	Fe≤0.001, Mo≤0.002			
粗微米级	15-25	≥99.9	1.0-1.1	1.0-2.0	26.5-27.5	深紫	Fe≤0.001, Mo≤0.002			
纳米级	0.05-0.1	≥99.95	1.0-1.2	10-15	26.8-27.5	深紫	Fe≤0.0005, Mo≤0.001			
粒径	细微米级 (1-5 μm): 适用于超细钨粉 (<0.5 μm)的制备。 标准微米级 (5-15 μm): 工业常规规格,广泛用于钨粉和碳化钨生产。 粗微米级 (15-25 μm): 适合大颗粒钨粉或特殊用途。 纳米级 (50-100 nm): 高比表面积,适用于高精度应用(如催化剂前驱体)。									
氧含量	理论值 27.2 wt%,实际控制在 26.5-27.5 wt%,纳米级略高,因表面吸附氧增加。									
颜色	随粒径增	随粒径增大从浅紫色变为深紫色,反映晶体尺寸和氧化态差异。								
比表面积	随粒径减小显著增加,纳米级高达10-15 m²/g。									
可定制	可根据客	可根据客户需求定制粒径、纯度、比表面积或杂质限值。								

四、包装与质保

包装:密封塑料瓶或真空铝箔袋,净重100g、500g或1kg,防潮防氧化。

y.chinatun 质保:每批附质量证书,含纯度、粒径分布(激光法)、晶型(XRD)、松装密度及氧含量 数据,保质期12个月(密封干燥条件)。

五、采购信息

邮箱: <u>sales@chinatungsten.com</u> 电话: +86 592 5129696

更多紫钨资讯,请访问中钨在线网站(www.tungsten-oxide.com),更多市场与实时资讯, 请关注微信公众号"中钨在线"。

Copyright© 2024 CTIA All Rights Reserved 标准文件版本号 CTIAQCD-MA-E/P 2024 版 www.ctia.com.cn

www.chinatungsten.com

版权与法律责任声明